
Proceedings of the

11th Junior Researcher Workshop
on Real-Time Computing

JRWRTC 2017
http://www.rtns17.org/jrwrtc2017/

Grenoble, France

October 3-6, 2017

Message from the Workshop Chairs

Welcome to the 11th Junior Researcher Workshop on Real-Time Computing, held in conjunc-
tion with the 25th International Conference on Real-Time and Network Systems (RTNS) in Greno-
ble, October 2017. The workshop provides an informal environment for junior researchers, where
they can present their ongoing work in a relaxed forum and engage in enriching discussions with
other members of the real-time systems community.

We would like to take this opportunity to express our gratitude to the members of the Program
Committee listed below for thoroughly reviewing all the submitted papers. We would also like
to thank all the authors who submitted their work to the workshop and hence contributed to its
success. We wish you success in your scientific careers and we hope that the workshop will help
you develop your ideas further. This year, JRWRTC accepted six peer-reviewed papers, which
cover various topics of the real-time field such as scheduling, WCET analysis, time predictability,
mixed criticality and sensor networks.

Yet, organizing this workshop would not have been possible without the help of many people.
First, we would like to thank Claire Maiza, Catherine Parent-Vigouroux, and Pascal Raymond,
General Chairs of RTNS 2017 for their guidance. We would also like to thank the local organizing
committee, Amaury Graillat, Sophie Quinton, Hamza Rihani, and Valentin Touzeau for having put
their time in ensuring that all the details were smooth. We would also like to thank Enrico Bini and
Claire Pagetti, Program Chairs of RTNS 2017, for their scientific work. We finally acknowledge
Geoffrey Nelissen (CISTER, Portugal) for his precious advice in the organization of the event.

On behalf of the Program Committee, we wish you a pleasant workshop. May the environment
be stimulating, with fruitful discussions and the presentation be enjoyable and entertaining.

Mitra Nasri, Max Planck for Software Systems
Guillaume Phavorin, Universit de Poitiers

JRWRTC 2017 Workshop Chairs

iv

Program Committee

Matthias Becker Mlardalen University, Sweden
Alessandro Biondi Scuola Superiore Sant’Anna, Italy
Georg von der Bruggen TU Dortmund, Germany
Simin Cai Mlardalen University, Sweden
Dakshina Dasari Robert Bosch GmbH, Germany
Frank Drr IPVS, University of Stuttgart, Germany
Pontus Ekberg Uppsala University, Sweden
Tomasz Kloda INRIA, France
Jing Li Washington University in St. Louis, USA
Morteza Mohaqeqi Uppsala University, Sweden
Borislav Nikolic CISTER/ISEP, Portugal
Abhilash Thekkilakattil AtlasCopco Industrial Technique R&D, Sweden
Kecheng Yang University of North Carolina at Chapel Hill, USA

Table of Contents

Message from the Workshop Chairs . iii

Multimode Application on a Reconfigurable Platform: Introducing a New Model and a First
Protocol . 1

Joël Goossens and Xavier Poczekajlo

Towards Statistical Estimation of Worst Case Inter-core Communications 5

Anselme Revuz and Liliana Cucu-Grosjean

Reducing the Gap between Theory and Practice: Towards a Proven Implementation of
Global EDF in Trampoline . 9

Khaoula Boukir, Jean-Luc Bechennec, and Anne-Marie Deplanche

New Approaches to Contention-Sensitive Nested Locking in Real-Time Systems 13

Catherine Nemitz

Ordering Strict Partial Orders to Model Behavioural Refinement . 17

Mathieu Montin and Marc Pantel

A hypervisor schedulability analysis for safety and security critical applications scheduled
in arbitrary patterns of slots . 21

Tristan Fautrel, Laurent George and Frédéric Fauberteau

v

Multimode application on a reconfigurable platform

Introducing a new model and a first protocol

Joël Goossens
Faculté des Sciences of the Université libre de

Bruxelles Brussels, Belgium
Joel.Goossens@ulb.ac.be

Xavier Poczekajlo
∗

Faculté des Sciences of the Université libre de
Bruxelles Brussels, Belgium

Xavier.Poczekajlo@ulb.ac.be

ABSTRACT
We consider the new problem of multimode applications for
reconfigurable platforms in the context of hard real-time
scheduling. In this problem, the taskset and the hard-
ware may change over the time whenever the current mode
of the system changes. Ensuring schedulability here requires
to prove (i) The system schedulability of every mode, (ii)
That any allowed mode change can take place with respect
to the given timing constraints. Solving (i) is a schedula-
bility problem upon heterogeneous systems. We propose a
model to formalise the whole problem, and a first protocol
to run any allowed mode change in the system with respect
to the timing constraints. Finally, we propose a validity test
to ensure that the property (ii) is respected.

Keywords
Multimode application; Reconfigurable system; Hard real-
time; Heterogeneous system

1. INTRODUCTION
Hard real-time systems become more and more complex.

Their correctness must be proven to ensure the safety of the
system. When using a classic mono-mode application, prov-
ing the system correctness often leads to over-approximation
of the workload. On certain systems, where some functions
are executed only in certain situations, it is useful to use a
more realistic and advanced model. The multimode applica-
tion model fulfils this role. For an example, the application
of an airplaine system will have very different modes de-
pending on whether the airplane is on the ground before the
take-off, or in cruise. Splitting the whole taskset into sev-
eral sub-tasksets allows more precise bounding on the overall
load at any instant. This is crucial when defining the system
requirements, and may lead to huge gains in term of system
capacity.

On a multimode application, the running taskset changes
over the system lifespan. It may be interesting to adapt the
system as well to fit each taskset the best. Today’s FPGAs
allow run-time hardware reconfiguration at high rate. Even
more interesting, FPGAs allow dynamic partial reconfigura-
tion (DPR): an FPGA may be divided into several partitions
each having different configurations, and a single partition
may be reconfigured without jeopardising the whole system.
[1] describes, in a low-level approach, how DPR may be used

∗Corresponding author.

and also gives more details about the current level of per-
formance of the existing FPGAs. It is also possible to use
processors which can change their speed at run-time.
Related work. The survey [5] proposes various solutions
for a multimode application on a uniprocessor system. More
important, it unifies a vocabulary for mode change applica-
tions. For an example, the notions of periodicity and syn-
chronous or asynchronous protocols are as useful in unipro-
cessor systems as in multiprocessor systems. Based on those
notions, [3] proposes the first multiprocessors protocols: a
synchronous protocol SM-MSO and an asynchronous pro-
tocol AM-MSO. It also computes an upper-bound for the
makespan of a taskset on a given system, which represents
the required time to scheduled the pending jobs during the
mode change (at most one job per task). This upper bound
is then refined in [2].

Multimode protocols, as they currently exist, only han-
dle the transition phase. During each mode execution, a
scheduler must be used to handle the taskset. Multiproces-
sor systems may be scheduled by partitioned, global, semi-
partitioned, or clustered algorithms. The latest has been
well studied for heterogeneous system, and [4] proposes
LPGIM . It is, to the best of our knowledge, one of the
most efficient approach for this problem. LPGIM consid-
ers the system as clusters of identical processors and assigns
a sub-taskset to each cluster. Inside the cluster, a global
scheduler may be used. The problem of heterogeneous sys-
tem is hence reduced to identical multiprocessor systems.
This approach may be used in the context of multimode
application on reconfigurable systems.

To the best of our knowledge, no such model nor mode
change protocol exist, where both the hardware and the soft-
ware can change during the lifespan of the system.
Contributions. In this paper, we introduce the first model
where the taskset and the hardware may change over the
time. We also propose a first synchronous protocol for such
application and its feasibility test.

2. MODEL
A reconfigurable multiprocessor system is a system com-

posed of partitions. A partition can be any computing unit,
as an FPGA partition or a general purpose processor. Each
partition can implement a configured processor through re-
configuration. The configured processor behaviour is defined
by its configuration. In the case of a processor with a fixed
behaviour, it is modelised as a partition with only two con-
figurations: on and off. From now on, configured processors

1

will be denoted as processors.
A multimode application for a reconfigurable system is de-

fined by a set of x different modes M
def
= {M1,M2, ...,Mx}.

Each mode Mh def
= 〈τh, Sh, Θ̃h,∆h〉 has to execute a taskset

τh with the given scheduler Sh on a system composed of a
set of processors (through partitions reconfiguration) with

respect to the configuration multiset Θ̃h ∈ Θm (see sec-
tion 2.2.2). When the system requires a mode change to
Mh, it must be done within a delay of ∆h unit of time.

The system activates and deactivates the mode with the
following constraint: at any time, one and only one mode
can be active in the system. When a mode is activated, its
taskset is enabled.

2.1 Taskset model
The taskset τ

def
= ∪xh=1τ

h is composed of several sub-task-
sets τh, each one being the specific taskset of the hth mode.

Each taskset is composed of nh tasks: τh
def
= {τh1 , . . . , τhnh}.

Each task τhi is a sporadic task, defined with three param-
eters 〈Chi , Dh

i , T
h
i 〉— a worst-case execution time, a relative

deadline, and a minimum inter-arrival time.
When a mode’s taskset is enabled, all its tasks are enabled.

At most one taskset can be enabled at any instant in the
system. When a task τhi is enabled, it may release a job
with respect to the minimum inter-arrival time Thi . When
a taskset is disabled, all its tasks are disabled and may not
release new jobs. However, if a job of a disabled taskset
is not complete, it must be completed with respect to its
absolute deadline. Those jobs are called rem-jobs in the
following.

2.2 System model

2.2.1 Processors and partitions
The system is composed of m reconfigurable partitions

denoted P
def
= {p1, p2, . . . , pm}. The m partitions can dy-

namically be configured as m processors with a specific con-
figuration. This operation is denoted as reconfiguration.

A partition has a type, depending on whether the parti-
tion represents a specific FPGA partition, or an other type
of computing unit. A partition of type ρ must always be
configured in a specific configuration. If the partition is not
used, it must be configured in the configuration θρ,0 later
defined in Section 2.2.2.

The configured partitions form a system of m configured

processors Π
def
= {π1, π2, . . . , πm}, denoted as processors. Hence,

they form an unrelated system of several clusters. A cluster
is a set of identical processors, i.e., partitions from the same
type sharing the same configuration.
Ph represents all the used partitions of a mode Mh and

Ph,cl represents the used partitions of a given cluster cl for
the mode Mh.

2.2.2 Partitions configuration
Reconfiguration can occur during a transition phase.

Θ
def
= ∪ρ Θρ represents the set of all available configura-

tions set in the system. A configuration set Θρ represents
all the configurations available for partitions of type ρ (e.g.
a partition of FPGA with a given number of logic blocks).

Θρ
def
= {θρ,0, . . . , θρ,`ρ} where:

• θρ,0 is the configuration where the partition is off, on
which no task can be scheduled. A partition configured
with θρ,0 is free.
• θρ,1, . . . , θρ,`ρ represent `ρ different configurations.

Each configuration executes the different tasks at an
unrelated speed, i.e., the speed of the processor config-
ured as such depends on the job being executed. Its
partition is used.

δz represents the delay to change to a specific configura-
tion z ∈ Θ. During this reconfiguration time, the processor
cannot execute any task. It is important to note that the
reconfiguration time does not depend on the previous con-
figuration of the partition. The reconfiguration time varies
because the partitions may be from different hardwares like
different FPGA models.

For any partition p, θ(p) represents the current configura-

tion of p. Θ̃h,ρ represents the configurations of mode h for
the partitions of type ρ.

2.2.3 Tasks progression rate
Because the system is heterogeneous, the job speed de-

pends on the type of the processor which executes the job.
Those data are an input of the schedulers which are black
boxes. Hence, there are omitted because of space constraints.

2.3 Mode transition
The system may receive a Mode Change Request MCR(h)

to the destination mode h, whenever the system is not han-
dling a transition phase. This instant is denoted tMCR(h).

The transition graph represents all the possible configu-
ration transitions. A transition between M src and Mdst is
possible if and only if there is an edge from M src to Mdst in
the transition graph, denoted by (M src,Mdst).

The system enters a reconfiguration phase at tMCR(dst).
It must then reconfigure itself according to the new mode
within the given delay ∆dst. After this delay, the destination
mode Mdst is activated and the transition phase ends.

For a given mode Mh, Θ̃h contains the required configu-
rations for the execution of τh.

After a Mode Change Request to mode Mh which occurred
at tMCR(h), the system must be reconfigured before the in-
stant equal to tMCR(h) + ∆h to be feasible.

3. PROTOCOL

3.1 Protocol
The mode-change protocol must ensure that the rem-jobs

are correctly scheduled and that the system is able to acti-
vate the new mode within the given delay. For that purpose,
it is composed of an offline computation phase, and of two
run-time phases. The offline phase computes for each couple
(M src,Mdst) of the source mode M src the necessary recon-
figurations.

The run-time phase 1 begins at tMCR(dst) and is completed
for each cluster, when all of their processors are idle.

The run-time phase 2 is the reconfiguration of the required
partitions.

3.1.1 Hypothesis on the schedulers
We consider in this protocol only clustered schedulers.

Unlike global schedulers, clustered schedulers allow tasks to
migrate only between the processors of the cluster where
the task is statically assigned. In addition, we consider only

2

schedulers that are preemptive, fixed-job priority and work-
conservative. We use the notions defined in [3].

The taskset of a mode h is divided into several sub-tasksets,
one per cluster: τh = ∪cl τ

h,cl. The scheduler Sh may use a
specific scheduling policy for each cluster cl which respects
the three assumptions aforementioned. Each scheduling pol-
icy must schedule the sub-taskset τh,cl of each cluster cl fea-
sibly. Every τh,cl is determined at design time.

3.1.2 Offline computation
The offline computation creates two tables per couple

(M src,Mdst) from the transition graph: the Empty Parti-
tions Reconfigurations table (EPRT) and the Used Parti-
tions Reconfigurations table (UPRT). Those tables are nec-
essary to reconfigure the system after a MCR(dst) when the
mode M src is active.

Each table depends on both the source mode M src and
the destination mode Mdst. Their computations use the
makespan upper bound of each cluster of M src (see [3]).

The Empty Partitions Reconfigurations table contains a
list of configurations required by Mdst not used by M src.
Those reconfigurations will be launched at tMCR(dst). Its
computation is described by the Algorithm 1.

The Used Partitions Reconfigurations table contains a list
of couple of configurations. A couple (θz1 , θz2) in the UPRT
indicates that a partition configured in θz1 will be reconfig-
ured in θz2 . Its computation is described by the Algorithm 2.

Algorithm 1: Creation of the EPRT for (M src, Mdst)

1 Input :Msrc : the source Mode

2 Mdst : the d e s t i n a t i o n Mode

3 Output : EPRT: the EPRT f o r (Msrc , Mdst)
4
5 begin
6 l e t EPRT be an empty mu l t i s e t
7
8 For each type o f p a r t i t i o n ρ

9 l e t ~Θdst,ρ
def
= Θ̃dst,ρ \ Θ̃src,ρ ∩ Θ̃dst,ρ : a vec tor

10 Order ~Θdst,ρ by r e c o n f i g u r a t i o n time ,
11 in dec r ea s ing order
12 l e t f r e e = the number o f f r e e p a r t i t i o n s
13 o f type ρ f o r the mode Msrc

14 Add the freeth f i r s t e lements o f ~Θdst,ρ

15 in EPRT
16 end

Algorithm 2: Creation of the UPRT for (M src, Mdst)

1 Input :Msrc : the source Mode

2 Mdst : the d e s t i n a t i o n Mode

3 Output : UPRT: the UPRT f o r (Msrc , Mdst)
4
5 begin
6 l e t UPRT be an empty mu l t i s e t
7
8 For each c l u s t e r cl o f Msrc

9 For each p ∈ Psrc,cl

10 makespan (p)
def
= makespan (c l)

11
12 For each type o f p a r t i t i o n ρ

13 l e t ~Θsrc,ρ the vecto r o f c o n f i g .
14 f o r used p a r t i t i o n s o f type ρ in Msrc

15 Order ~Θsrc,ρ by makespan

16 l e t ~Θdst,ρ
def
= Θ̃dst,ρ \ Θ̃src,ρ ∩ Θ̃dst,ρ : a vec tor

17 Order ~Θdst,ρ by r e c o n f i g u r a t i o n time ,
18 in dec r ea s ing order
19 l e t f r e e = the number o f f r e e p a r t i t i o n s
20 o f type ρ f o r the mode Msrc

21 Remove from ~Θdst,ρ the freeth f i r s t e l .

22 i f | ~Θdst,ρ|> 0

23 For each nth e l . o f ~Θdst,ρ

24 l e t θdst,ρ = ~Θdst,ρ(n)

25 add to UPRT: (~Θsrc,ρ(n), θdst,ρ)
26 end

3.1.3 Run-time phase 1: Schedule rem-jobs
This phase relies heavily on the SM-MSO protocol from [3].
At the MCR(Mdst), the protocol deactivates the mode

M src and disables all the current enabled tasks. Then, it
keeps the scheduler Ssrc to schedule the rem-jobs until idle-
time is reached for every processor.

Because the scheduler Ssrc can schedule τ src with no dead-
line miss: the rem-jobs will be feasibly scheduled by using
the same scheduler.

3.1.4 Run-time phase 2: Reconfiguration
At the MCR(Mdst), the unused partitions of M src are

reconfigured. For each element θz1 in UPRT, the protocol
reconfigures a free partition to the configuration θz1 .

When all the processors of a cluster are idle, the protocol
launches its required reconfigurations. Each partition p of
the cluster picks, if possible, a couple (θsrc, θdst) in the EPRT
where the source configuration θsrc is the current configura-
tion of p, i.e., θsrc = θ(p). An entry of the EPRT can be
picked only once per transition phase. Then, the partition
p is reconfigured to the destination configuration θdst.

When all the cluster are idle, the system can safely acti-
vate the mode Mdst, and enables all the tasks of τdst.

3.1.5 Example
To illustrate our protocol, we show an example of a mul-

timode application with two modes M1,M2 (see Figure 1).
The system is allowed to change from M1 to M2, and we
show how works the transition phase. For that purpose, here
are the partial specifications of the system:

• For mode M1: Θ̃1 = {θ0, θ1, θ1, θ2}, τ1 = {τ1,1,, τ1,2},
where τ1,1 = {τ1, τ2, τ3}, τ1,2 = {τ4, τ5};
• For mode M2: ∆2 = 5.5, Θ̃2 = {θ2, θ4, θ4, θ5}, τ2 =
{τ2,1, τ2,2, τ2,3}, where τ2,1 = {τ6, τ7, τ8}, τ2,2 = {τ9},
τ2,3 = {τ10};
• Reconfiguration time for θ4, θ5: δθ4 = 2, δθ5 = 1;
• Makespan upper-bound for mode M1 clusters:
makespan(τ1,1) = 3.5, makespan(τ1,2) = 4.5;
• EPRT(M1,M2) = {θ4},

UPRT(M1,M2) = {(θ1, θ4), (θ1, θ5)};
• Tasks specification are omitted because of space con-

straint and relevance;
• All the partitions have the same type and hence the

same available configurations.
At t = 0, each active task releases a job.
At t = 3, τ3 releases a new job.
At t = 4, τ1, τ2 and τ4 release a new job.
At t = 4.5 a MCR(2) occurs: the mode M2 must be

activated by tMCR(2) +∆2 = 4.5+5.5. However, τ1, τ2, τ3, τ4
have active rem-jobs. For an example, the second job of
τ1 was released at 4 and must be completed. The scheduler
used by M1 is kept to schedule the rem-jobs. p1 is free in the
mode M1: it is immediately reconfigured to a configuration
in the EPRT: θ4.

At t = 5.5, the cluster τ1,2 is idle, but no couple (τ2, X)
exists in the UPRT: p4 is not reconfigured. At t = 7, the

3

t

p1

p2

p3

p4
0 4 8 12

idle reconf. τ6 τ7

θ0 θ4

τ1 τ3 τ1 reconf. τ7 τ8

θ1 θ4

τ2 τ3 τ2 rec. τ9 τ9 τ9

θ1 θ5

τ4 τ5 τ4 τ10 τ10

θ2

MCR(2) Enable M2

Figure 1: Example of a Multimode application with recon-
figurations

cluster τ1,1 is idle, so each configuration picks a couple in
the EPRT: (θ1, θ4) and (θ1, θ5).

At t = 9, all the partitions are idle. The mode M2 is
activated, and its taskset τ2 enabled. Because tMCR(2) +
∆2 > 9, the transition delay time constraint was respected.

3.2 Validity test
We provide a validity test for our protocol. The validity

test is a sufficient condition which indicates whether a given
multimode application is feasible or not, i.e., if all the dead-
lines of the rem-jobs will be met and if the transition phase
delay will be respected, for any mode change allowed by the
transition graph.

By construction, all the deadlines will be met during a
transition phase. However, we must provide an upper bound
of the transition phase for every mode Mdst. This upper
bound depends on the upper-bound of the makespan of a
cluster ms(src, cl), defined by [2] (see Corollary 2.2). With-
out loss of generality, we assume the tasks to be ordered by
processing time.

ms(src, cl)
def
=

c|τsrc,cl|, if |τ src,cl|= |Pcl|
∑|τsrc,cl|−1
i=1 ci

|Pcl| + c|τsrc,cl|, otherwise

For any couple (M src,Mdst), the upper bound for an empty
partition reconfiguration (EPR-UB) is:

EPR-UB(M src,Mdst)
def
= max({∀z ∈ Θ̃src δz})

For any couple (M src,Mdst), the upper bound for an used
partition reconfiguration (UPR-UB) is:

UPR-UB(M src,Mdst)
def
=

max({∀ρ UPR-UB(M src,Mdst, ρ)})
with

UPR-UB(M src,Mdst, ρ)
def
= max(

{∀i = 0..|Θ̃dst,ρ| δzi,ρ + UPM(ρ, i)})
where
• zit is the ith element of the table of configurations of
Mdst for partitions of type ρ, ordered by reconfigura-
tion time in decreasing order and
• UPM(ρ, i) is the ith element of the vector of the upper

bound makespan of each partition of type ρ of Psrc,
ordered by duration increasing.

Therefore, for any couple (M src,Mdst), the upper bound
of a transition phase is:

UB(M src,Mdst)
def
=

max(EPR-UB(M src,Mdst),UPR-UB(M src,Mdst))

Hence, the upper bound for any transition allowed to Mdst

is:

max({UB(M src,Mdst)|(M src,Mdst) ∈ TransitionGraph})

4. CONCLUSION AND FUTURE WORK
The technical advance for FPGAs leads us to consider a

new paradigm for multimode application, with a system that
is reconfigured in an efficient way for each mode. To the best
of our knowledge, no such model currently exists. In this pa-
per, we introduce the first model which fills that gap. This
model can be seen as an extension of the multimode appli-
cation model for multiprocessor systems. We also propose a
synchronous protocol, associated with a validity test for any
application and system on the new model. This protocol
is more than a simple generalisation of existing protocols,
using the makespan of each cluster to tighten the transition
phase delay, and thus allowing more applications to pass the
validity test provided by this article.

Future work. A first contribution would be to tighten
the validity test by computing a makespan for each processor
rather than each cluster. Furthermore, we intend to propose
a more generic model. Our first model can be extended via
several parameters. We want to be able to handle schedulers
which allow inter-cluster migrations. We also want to intro-
duce mode independent tasks to describe tasks that need
to release jobs at any instant in the system, even during a
transition phase (see periodicity in [5]). To fully take advan-
tage of the mode independent tasks, we intend to propose
an asynchronous protocol with periodicity.

In the current model, the different partition types do not
share any configuration. A configuration for an FPGA parti-
tion can be used on an other FPGA partition with more logic
blocks. It may be interesting to have configuration that are
usable by different partition types to gain more flexibility.

5. REFERENCES
[1] A. Biondi, A. Balsini, M. Pagani, E. Rossi,

M. Marinoni, and G. C. Buttazzo. A framework for
supporting real-time applications on dynamic
reconfigurable fpgas. In Real-Time Systems Symposium,
pages 1–12, 2016.

[2] V. Nélis. Energy-Aware Real-Time Scheduling in
Embedded Multiprocessor Systems. PhD thesis,
Université libre de Bruxelles, 2010.

[3] V. Nélis, J. Goossens, and B. Andersson. Two protocols
for scheduling multi-mode real-time systems upon
identical multiprocessor platforms. In Euromicro
Conference on Real-Time Systems, pages 151–160,
2009.

[4] G. Raravi, B. Andersson, V. Nélis, and K. Bletsas.
Task assignment algorithms for two-type heterogeneous
multiprocessors. Real-Time Systems, 50(1):87–141,
2014.

[5] J. Real and A. Crespo. Mode change protocols for
real-time systems: A survey and a new proposal.
Real-Time Systems, 26(2):161–197, 2004.

4

Towards statistical estimation of worst case inter-core
communications

Anselme Revuz
∗

Inria and University Paris-Est
2 rue Simone Iff

Paris, France
anselme.revuz@gmail.com

Liliana Cucu-Grosjean
†

Inria
2 rue Simone Iff

Paris, France
liliana.cucu@inria.fr

ABSTRACT
Statistical approaches have recently received increased ef-
fort from the real-time community. While taking into ac-
count that worst case scenarios are rare events, the statisti-
cal approaches may decrease considerable the pessimism of
a real-time analysis. In this paper we present first results on
the statistical estimation of inter-core communications on a
multicore platform. Our preliminary results are based on
the utilization of the Extreme Value Theory and they are
promising as they allow to detect insufficient observations
of the communications.

CCS Concepts
•Computer systems organization → Embedded sys-
tems; •Networks → Network reliability;

Keywords
probabilistic worst case execution time, multicores, many-
cores

1. INTRODUCTION AND RELATED WORK
The arrival of new complex architectures, as an answer to

more and more functionalities request by end users, imposes
the appearance of new time analyses to real-time designers.
Most architectures include today cache memories, instruc-
tions pipelines to cite some common features that have a
direct impact on the execution time of a program on a pro-
cessor. Mainly conceived to ensure excellent average time
behaviour, these features may increase in an important way
the worst case execution times of programs. Following the
same evolution, multicores and manycores architectures are
increasing the calculation capacity by adding inter-core com-
munication costs to the time behaviour of the programs.

Due to intellectual property concerns but also not suf-
ficiently analyzed time behaviour, the real-time designers
search for new analysis techniques to solve the problem of
time estimation. Complete models of the architectures could
be proposed but their models may bring higher complexity
to the analyses and also increased pessimism. Indeed the
worst-case scenarios are difficult to model and also may have
a low probability of appearance. As a result, probabilistic
and statistical methods seem promising as they take into
account this low probability of appearance of a worst case
situation.

∗MSc student
†Researcher

In this context, approaches taking into account the proba-
bility of appearance of a worst case execution time have been
proposed and different existing schedulability results are ap-
plied for job-level probabilistic execution times [5], task-level
probabilistic worst case execution times [9] or taking into
account dependences [10]. While probabilistic worst case
execution time estimation has received an important effort
either by measurement-based reasoning [6] [7] [12] [4] [3] [11]
or static reasoning [1] [2], different statistical tests are used
within current measurement-based solutions.

From our best knowledge the problem of inter-core com-
munications is yet not received any solution based on the
utilization of statistical approaches considering worst case
estimations.

Our contribution: In this paper we present first argu-
ments in favor of statistical estimation of inter-core com-
munications when complete models are difficult to propose
or their utilization is too costly because of the pessimistic
hypotheses.

Organization of the paper: The paper is organized as fol-
lows. In Section 2 we present the main definitions and nota-
tions required by our contribution. We remind the statisti-
cal theory of Extreme Value Theory in Section 3. Numerical
experiments are presented in Section 4 which allows us to
conclude in the last section of the paper.

2. PROBABILISTIC WORST CASE EXECU-
TION TIME AND PROBABILISTIC WORST
CASE EXECUTION COMMUNICATION
TIME

In this section we first provide the classical definition of
execution time and worst case execution time of a program
and based on these formulations, we propose a similar defi-
nition for inter-core communications.

DefinitionThe probabilistic execution time (pET) of the
instance of a program describes the probability that the exe-
cution time of that instance is equal to a given value.

For instance the jth instance of a program τi may have a
pET

Cji =

(
2 3 5 6 105
0.7 0.2 0.05 0.04 0.01

)
(1)

If fCj
i
(2) = 0.7, then the execution time of the jth instance

of τi has a probability of 0.7 to be equal to 2.
The definition of the probabilistic worst-case execution

time (pWCET) of a program is based on the relation �

5

between two probability distributions, provided in the defi-
nition below.

Definition [8] Let X and Y be two random variables.
We say that X is worse than Y if FX (x) ≤ FY(x), ∀x, and
denote it by X � Y. Here FX is the cumulative distribution
function of X .

In Figure 1 FX1(x) never goes below FX2(x), meaning that
X2 � X1. Note that X2 and X3 are not comparable. By
CDF we understand the cumulative distribution function of
a random variable.

Figure 1: Possible relations between the CDFs of
various random variables

Definition The probabilistic worst case execution time
(pWCET) Ci of a program τi is an upper bound on the pETs
Cji of all instances of τi ∀j and it may be described by the

relation � as Ci � Cji , ∀j.
Graphically this means that the CDF of Ci stays under

the CDF of Cji , ∀j. Thus the probabilistic worst case
execution time is upper bounding all probabilistic
execution times of a program.

DefinitionThe probabilistic inter-core communication time
(pCT) of a program describes the probability that the commu-
nication time required for the program to finish its execution
is equal to a given value.

Definition The probabilistic worst case communication
time (pWCCT) of a program is an upper bound on all pos-
sible pCTs of that program.

3. MEASUREMENT-BASED APPROACH AND
EXTREME VALUE THEORY

A measurement-based approach for estimating the pWCCT
of a program has two main parts: (i) collecting the commu-
nication time traces of the program; and (ii) estimation the
pWCCT based on the set of communication time traces ob-
tained during the first step.

The second step is done in our paper by using the Extreme
Value Theory (EVT) [6] [7] [12] [4]. According to EVT if the
maximum of communication times of a program converges,
then this maximum of the communication times Ci,∀i ≥ 1
will converge to one of the three possible curves described
in Figure 2: Fréchet, Weibull and Gumbel corresponding to
a shape parameter ξ < 0, ξ > 0, and ξ = 0, respectively.

EVT has two different formulations: Generalized Extreme
Value (GEV aka BM) and Generalized Pareto Distribution
(GPD). BM is based on the block maxima reasoning that
groups the communication times by smaller groups and only
the largest value of each group is considered for the pWCCT
estimation (see Figure 3). GPD is a (graphical) method
based on the threshold approach that considers only the
values larger than the chosen threshold for the pWCCT es-
timation (see Figure 4).

Figure 2: The three possible upper-bounds of a set
of Ci, ∀i ≥ 1 of the same program

MBPTA

  Uses a combination of two different methods
  Generalized Extreme Value (GEV)

-  Uses Block Maxima where an optimum block size is derived

  General Pareto Distribution (GPD)

-  Uses Peaks Over a Threshold (POT) where the optimum threshold is
derived

7 Paris, France 26/02/2015

Threshold

Block Size

E
T

Figure 3: BM keeps the largest value for each block

MBPTA

  Uses a combination of two different methods
  Generalized Extreme Value (GEV)

-  Uses Block Maxima where an optimum block size is derived

  General Pareto Distribution (GPD)

-  Uses Peaks Over a Threshold (POT) where the optimum threshold is
derived

7 Paris, France 26/02/2015

Threshold

Block Size

E
T

Figure 4: GPD keeps all values above the threshold

Existing work considers the execution time traces obtained
mainly in isolation. Our contribution is obtaining the
communication time traces while different instances
of different programs are executed on several cores.
The context of our numerical experiments is detailed in Sec-
tion 4.

4. EXPERIMENTS
Our experiments on inter-core communications have been

done on Kalray MPPA-256 processor. The MPPA-256 pro-
cessor has 16 clusters, each of which contain set of 16 work-
ing cores and 1 resource manager core. It contains also 4
sub-sets I/O which handle external communications. Thus
MPPA-256 has 256 working cores for an overall of 288 cores
(management and working cores together).

In order to facilitate the communication between clusters,
two Networks on Chip are used. The first NoC transfers
control information while the second NoC is used to transfer
data. A global view of the processor is provided in Figure 51.

Our measurements concern the time of transfer between
cores within the same cluster of the MPPA processor. We
use several cores and each executes its own thread while
only two cores are specifically used to measure. The first
core lunches a counter and it sends a signal to the second
core (which executes a part of the program started on the
first core). This second core sends back a signal to the first
core that stops its counter once the signal is received. In our
case, we measure the time since the start of the signal from
the first core to the arrival back to the first core of the answer
from the second core. In order to make our experiments close

1Kalray Courtesy

6

Figure 5: Global view of the MPPA-256

to the reality, we have also introduced interferences on other
cores: other cores send also signals more or less regularly to
each other during the measurements, which increases the
time transfer of the original signal (the measured one).

In reality the measures should be representative for all in-
put values and for all execution environments. In our case
the tests are simple with no input value and the different
execution environments are obtained by varying the inter-
ference level.

Once our measurements obtained, we use the EVT tool
to propose estimations of the probabilistic worst case distri-
butions.

For a first scenario with low interferences we have obtained
time values between 9012 and 1392 for the same program ex-
ecuted between the same two cores, the average value being
1070. For the scenario with high interferences we have ob-
tained time values from 1064 and 1792 for the same program
executed between the same two cores, the average value be-
ing 1395. These values are resumed in the table below for
an easier comparison.

Scenario Minimum Maximum Average
With low interferences 901 1392 1070
With high interferences 1064 1792 1395

The statistical estimation of the worst-case inter-core com-
munication time is done by using the Extreme Value Theory
(see Section 3) and more precisely we use the implemen-
tation available at http://inria-rscript.serveftp.com.
The web page of the tool requires a secured connection using
the login aoste and the password aoste.

Both sets of measured time values (with low and with
strong interferences) provide set of values that are identi-
cally distributed but not independent. The independence
hypothesis is not mandatory to apply the Extreme Value
Theory and the tool used is taking into account this specific
case. The estimated probability distributions are presented
in Figure 6, respectively, Figure 7.

In Figure 6, the blue line indicates the probability distri-
bution of the measured values. The two versions of the Ex-
treme Value Theory (BM in black and GPD in red) provide
extreme estimations that are not converging. This comes
from the statistical dependences which has an important
impact in this case on the BM method. Thus for the sce-
nario with low interferences, new measurements are required
to understand the dependences between the communication
times. With our current understanding we are not able to
indicate if they are coming from the measurement protocol
or scheduling choices of the processor. This is, thus, left as
future work.

2The time values are given as number of core cycles.

Figure 6: Statistical estimation of inter-core com-
munications with low interferences

In Figure 7, the blue line indicates the probability dis-
tribution of the measured values. The two versions of the
Extreme Value Theory (BM in black and GPD in red) pro-
vide extreme estimations that are converging. This indicates
that estimated probability distribution is close to an achiev-
able worst case as the measured communication times are
not very different from the estimated extremes. This also
indicates that our interferences are heavy and less heavier
interferences should be considered. This is also identified as
future work.

5. CONCLUSIONS
In this paper we have presented first results on the uti-

lization of the Extreme Value Theory for the statistical es-
timation of worst-case inter-core communications on mul-
ticore processors. After detailing the context of our work,
we have introduced the Extreme Value Theory. Our experi-
ments concern a Kalray processor and we have provided its
description. Our statistical estimations indicate that (1) the
scenario with low interferences requires a better understand-
ing of the dependences between the communication times
and (2) the scenario with high interferences is pessimistic,
less heavier interferences should be considered in the future.

6. ACKNOWLEDGMENTS
The authors would like to thank Amaury Graillat and Mi-

hail Asavoae for their help on the utilization of the Kalray
processor. Moreover the authors would like to thank Adri-
ana Gogonel and Cristian Maxim for their support on the
utilization of the EVT tool.

This research and its related results have been supported
by the French LEOC collaborative project Capacites.

7. REFERENCES

7

Figure 7: Statistical estimation of inter-core com-
munications with high interferences

[1] S. Altmeyer, L. Cucu-Grosjean, and R. Davis. Static
probabilistic timing analysis for real-time systems
using random replacement caches. Real-Time Systems,
51(1):77–123, 2015.

[2] S. Altmeyer and R. Davis. On the correctness,
optimality and precision of static probabilistic timing
analysis. In Design, Automation & Test in Europe
Conference & Exhibition, pages 1–6, 2014.

[3] K. Berezovskyi, L. Santinelli, K. Bletsas, and
E. Tovar. WCET measurement-based and extreme
value theory characterisation of CUDA kernels. In
22nd International Conference on Real-Time Networks

and Systems, page 279, 2014.

[4] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo,
T. Vardanega, L. Kosmidis, J. Abella, E. Mezzeti,
E. Quinones, and F. Cazorla. Measurement-based
probabilistic timing analysis for multi-path programs.
In the 24th Euromicro Conference on Real-time
Systems, 2012.

[5] J. Dı́az, D. Garcia, K. Kim, C. Lee, L. Bello, L. J.M.,
and O. Mirabella. Stochastic analysis of periodic
real-time systems. In the 23rd IEEE Real-Time
Systems Symposium (RTSS02), 2002.

[6] S. Edgar and A. Burns. Statistical analysis of WCET
for scheduling. In the 22nd IEEE Real-Time Systems
Symposium, 2001.

[7] J. Hansen, S. Hissam, and G. A. Moreno.
Statistical-based wcet estimation and validation. In
the 9th International Workshop on Worst-Case
Execution Time (WCET) Analysis, 2009.

[8] J. López, J. Dı́az, J. Entrialgo, and D. Garćıa.
Stochastic analysis of real-time systems under
preemptive priority-driven scheduling. Real-Time
Systems, pages 180–207, 2008.

[9] D. Maxim and L. Cucu-Grosjean. Response time
analysis for fixed-priority tasks with multiple
probabilistic parameters. In the IEEE Real-Time
Systems Symposium, 2013.

[10] A. Melani, E. Noulard, and L. Santinelli. Learning
from probabilities: Dependences within real-time
systems. In Proceedings of 2013 IEEE 18th Conference
on Emerging Technologies & Factory Automation,
ETFA, pages 1–8, 2013.

[11] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart.
On the sustainability of the extreme value theory for
WCET estimation. In 14th International Workshop on
Worst-Case Execution Time Analysis, pages 21–30,
2014.

[12] L. Yue, I. Bate, T. Nolte, and L. Cucu-Grosjean. A
new way about using statistical analysis of worst-case
execution times. ACM SIGBED Review, September

2011.

8

Reducing the gap between theory and practice : towards A
Proven Implementation of Global EDF in Trampoline

Khaoula BOUKIR
University of Nantes

LS2N UMR 6004
1 rue de la Nöe - BP 9210

Nantes 44321, France
khaoula.boukir@ls2n.fr

Jean-Luc BÉCHENNEC
CNRS

LS2N UMR 6004
1 rue de la Nöe - BP 9210

Nantes 44321, France
jean-

luc.bechennec@ls2n.fr

Anne-Marie
DÉPLANCHE

University of Nantes
LS2N UMR 6004

1 rue de la Nöe - BP 9210
Nantes 44321, France

anne-
marie.deplanche@ls2n.fr

ABSTRACT
With technological progress, multiprocessor and multicore
computing platforms are nowadays largely used in the ma-
jority of domains especially in real-time systems and embed-
ded systems. This has introduced an increasing number of
scientific researches in multiprocessor real-time scheduling.
However, most of results are mainly theoretical and very few
implementations on real systems have been studied.

In this paper we present our implementation of a mul-
tiprocessor scheduler, based on global EDF policy, in an
OSEK/VDX real-time operating system called Trampoline.
It’s a preliminary step since we intend to support this imple-
mentation with a formal verification of its correctness, after
that we consider to extend this study to other scheduling
policies which are more ”sophisticated”.

CCS Concepts
•Computer systems organization → Real-time operat-
ing systems;

Keywords
Real-time scheduling, EDF, RTOS, Trampoline

1. INTRODUCTION
In embedded computing field, many standards for real-

time systems have emerged to provide solutions to the in-
creasing complexity of embedded electronic architecture. The
daily challenge is to satisfy high performance requirements
and to be able to execute in dynamic environments where
the characteristics of the computational load cannot be pre-
cisely predicted.

This has pushed researchers and developers to consider
multiprocessor and multicore architectures for executing real-
time applications. In real-time scheduling community, many
multiprocessor policies have been proposed, offering the op-
timality (allowing a total use of processing units and guar-
anteeing the satisfaction of all temporal constraints). Also
a lot of theoretical studies have proven that a lot of global
scheduling policies offer this property better, compared to
partitioned one [1], since it has the advantage of automat-
ically performing load balancing between processors. How-
ever, small attention has been given to the implementation
of such policies within a real platform. This is due to the

complete abstraction of implementation constraints made in
the literature (overheads, data structure choices, scheduling
events handling, etc.). This gap between the theoretical
model and the reality does not encourage the adoption of
these policies within real systems. Therefore, it is essential
to confront them with real targets in order to objectively
evaluate their interest.

In this context, our goal is to study in depth the implemen-
tation of global multiprocessor scheduling policies within a
real platform. Moreover we wish to pursue this research with
a formal study of the scheduler’s behaviour using verification
tools, in order to prove the correctness of our implementa-
tion.

The rest of the paper is organized as follows. Section 2
provides a short overview of real-time systems in general and
Trampoline RTOS. Section 3 presents our goals. Section 4
discusses the choices of implementation to integrate a global
scheduler. Finally section 5 states our perspectives and the
future prospects of our research.

2. BACKGROUND
This section introduces the principle of real-time schedul-

ing and presents Trampoline real-time operating system.

2.1 Survey of real-time multiprocessor schedul-
ing

2.1.1 Multiprocessor real-time scheduling
Real-time scheduling essentially refers to determining the

order according to which tasks are to be executed on the
processor(s) such that the temporal constraints are satis-
fied. The decision of this order is the result of scheduling
algorithms that calculate the priority of every job.

Note that scheduling algorithms can be classified based
on the target platform on which tasks are to be run. Ac-
cordingly the classes of scheduling algorithms are : unipro-
cessor scheduling in which the problem is to determine
a temporal allocation of the tasks on a single processor ;
multiprocessor scheduling for which the execution is to
be run on several processors, thus the problem is to define a
spatial allocation of tasks on processors and then a temporal
allocation on each processor.

In multiprocessor scheduling, there are three approaches
for task scheduling: partitioned scheduling in which each
task is statically assigned to one processor and no migration

9

of tasks is permitted ; global scheduling in which tasks
compete for the use of all processors, hence migration is
allowed ; hybrid scheduling which is a cross between the
former two approaches.

In global scheduling, the first algorithms proposed were
a generalization of uniprocessor algorithms such as EDF or
RM in multiprocessor. However, it has been shown that
this extension does not allow a better use of processing units
than partitioned algorithms [2]. In the early 1990s, new ap-
proaches for global scheduling have emerged introducing the
”fairness” of execution. The fair policies, such as PFair [3]
enable reaching optimality by imposing a certain execution
rhythm, they come close to the fluid execution but at the
expense of significant number of migrations. Recently, other
policies like U-EDF [4] have shown that it is possible to pre-
serve the optimality by releasing the fairness. Nonetheless,
it is more complicated to calculate the scheduling decision
in these policies.

2.1.2 GLobal EDF scheduling
Global EDF (for Global Earliest Deadline First) is a global

scheduler that generalizes the well-known EDF policy [5] in
multiprocessor, for which the highest priority job is the one
with the earliest absolute deadline. Thus, for Global EDF,
m jobs with the closest deadline are executed on m free
processors.

As a first step in our study, we are interested in the im-
plementation of this policy.

2.2 Trampoline RTOS
Trampoline [6] is an open source real-time operating sys-

tem that implements the OSEK/VDX standard and its suc-
cessor AUTOSAR. It was developed in Real-Time Systems
team of LS2N for academic purposes.

2.2.1 Trampoline architecture
The architecture of Trampoline RTOS contains three ma-

jor layers as shown in Fig. 1: API (for Application Program-
ming Interface) which gathers all the services exposed to the
application ; Kernel that contains all the low-level functions
required to: start the OS, start/stop, schedule or synchro-
nise the processes (tasks) ; BSP (for Board Support Package)
which depends on the target machine has 4 components: the
external interrupt handler, the system call handler, the con-
text switch manager and memory protection manager.

Figure 1: Trampoline architecture

Note that Trampoline RTOS is currently portable to dif-
ferent embedded targets: ARM7, AVR (Atmel), ARM -
Cortex-M, ARM Cortex-A, PowerPC, POSIX etc.

2.2.2 Scheduling
As mentioned, Trampoline is an OSEK/VDX based oper-

ating system, thus it implements a basic preemptive schedul-
ing policy based on fixed priority and partitioned scheduling
in multiprocessor. The priority levels of tasks are statically
assigned.

Trampoline’s Scheduler handles a list to store the descrip-
tors of ready tasks in uniprocessor and one list per core in
multiprocessor. This list is implemented as a table of FIFOs
indexed by the priority of tasks. The descriptors of the tasks
which are newly activated or released from an event waiting
are placed in their priority level FIFO in the order of their
activation date. The preempted tasks are placed in the head
of the FIFO.

Trampoline’s Scheduler uses another structure tpl kern
which stores all the informations about the running tasks.

3. OUR GOAL
The main goal of our work is to try to bring the theory

into practice in real-time scheduling, mainly by verifying
with model-checking whether the scheduling properties an-
nounced by theoretical studies can still be preserved when
implemented. For that the model needs to be as close as pos-
sible to the implementation. We will mainly investigate the
implementation of global multiprocessor scheduling policies.

Thus we first intend to modify Trampoline so that it can
support global scheduling policies. After that we consider to
verify, based on a formal model, several functional and tem-
poral properties such as : the scheduler produces the correct
execution sequence, the scheduler decisions don’t lead to a
deadlock, a task is not executed at the same time by more
than one processor, etc.

Trampoline has already been modeled by Tigori [10]. In
this model all the source code of the OS is abstracted by a
combination of UPPAAL’s functions [11] and a network of
extended finite automata; The variables used in the model
are the control variables of the operating system; Actions
and conditions associated with each transition are the same
actions and conditions of the operating system program and
the imperative expression code associated with each transi-
tion of the automata is very close to the operating system
code. Thus the model is very close to the actual source
code and is a good basis for global scheduler implementa-
tion modeling.

4. IMPLEMENTATION DETAILS
In this section, the choices made for the implementation

of Global EDF in Trampoline are presented. First, we will
discuss the time representation and the computation of rel-
ative deadlines of the tasks. Then, a presentation of the
data structure used to implement the list of ready tasks is
provided, followed by a presentation of the scheduler’s func-
tions.

4.1 Time representation
Since Global EDF is based on job’s absolute deadline

dates, it requires a time management mechanism able to
: 1) represent and compare such dates using the minimum
memory possible; 2) handle the timer overflow without a
large runtime overhead.

There are two different ways for time representation. In
both of them, time is a variable represented using n bits and

10

a resolution :

• linear time model : where the time runs from 0 to 2n−1.
For example in POSIX systems, time is calculated as
a signed 32-bit integer that started since 1 January
1970 and will end on 19 January 2038 [7]. Therefore,
a solution should be predicted by then to handle this
overflow.

• circular time model : unlike the linear model, this ap-
proach can handle the ”apocalypse” by offering an infi-
nite system lifetime1, since the time progresses in cy-
cles from 0 to 2n− 1 and drops to 0 again to avoid the
overflow.

In our case, the system time is implemented using a cir-
cular time model with 32-bit variable and 50µ resolution
forcing each cycle to have a length of a few days. An abso-
lute deadline di is calculated whenever a job is activated by
adding the corresponding relative deadline Di to the current
time t: di = Di + t. The current time can be evaluated by
the ticks of Trampoline’s system counter. For comparing
two deadlines, we decided to use the ICTOH algorithm [8]
that Carlini and Butazzo proposed and proved its ability to
handle timer overflows with a small overhead compared to
other techniques.

The idea of this algorithm is that, if we consider two dead-
lines di and dj represented by n-bit unsigned integers, their
comparaison can be performed by evaluating the difference
between them as an unsigned n-bit integer and compare it
to the half of the system’s lifetime P/2. Thus, we have :

1. if unsigned(di − dj) > P/2 then di is before dj .

2. if unsigned(di − dj) < P/2 then di is after dj .

3. if unsigned(di− dj) = 0 then di and dj are simultane-
ous.

This difference is also the distance evaluated from di to
dj on the time circle in the direction of increasing values.
Note that the results of this comparison is valid only if
|di − dj | < P/2. In other words, task timing constraints
can not exceed P/2 ticks. For example, if we evaluate dead-
line events d1, d2 and d3 in Fig. 2 in 32-bit system, we have:
dista = unsigned(d1−d2) = F3332CCC > 7FFFFFFF =
P/2 and distb = unsigned(d3 − d2) = 266666CC < P/2,
which means that d1 preceeds d2, and d3 succeeds d2.

4.2 Scheduler data structures
The data structures that we need are especially for stor-

ing the ready tasks according to their priority. In Global
EDF scheduler, it’s the absolute deadline that determines
the execution order of jobs. Thus, the ready list should be
sorted in an increasing absolute deadline order. It means
that a newly activated job or a preempted one should be
inserted in its exact place in the list. Note that a task can
also have more than one execution instance (pending jobs),
hence a priority level should be reserved for them. Also in
case of system overload, the number of ready tasks must be
bounded.

For that we consider two data structures for storing the
ready jobs: ReadyList to store active jobs if their activation

1The maximum time the system can operate without caus-
ing a clock overrun, it can be calculated by multiplying the
resolution with 2n − 1.

Figure 2: Events evaluated by ICTOH

count2 is equal to one ; PendingJobList is used to store jobs
that belong to tasks which have another job running or in the
ReadyList. Note that each task has its own PendingJobList.

The choice of a data structure must essentially depend on
the complexity of the task operations using the structure.
There are three important operations that are frequently ex-
ecuted in every ready task list: inserting a task once it’s acti-
vated, searching for the highest priority task and extracting
a task for its execution. An empirical study of several data
structures was made by Jones [9] comparing the complexity
of insertion (enqueue) and extraction (dequeue) operations.
This comparaison shows that a heap data structure can be
one of the best alternatives for a dynamic priority policy
for its efficiency. The requirements of this data structure
in terms of complexity are: O(1) for searching the highest
priority task and O(logn) for inserting or extracting a task.

In our implementation, we are interested in a min heap in
which deadlines are used as keys (values of the nodes) such
that the heap property for each node is: if a node A is a
parent of a node B, then deadline(A) ≤ deadline(B). This
structure can be implemented by using a simple array such
that: the first element contains the root, the next two ele-
ments of the array contain its children, the next four contain
their four children, etc (see Fig. 3).

Figure 3: Example of a min heap implemented as an
array

For the PendingJobList implementation, a simple FIFO
is used to store pending jobs according to their activation’s
date. All the operations using this structure are performed
in constant time O(1). The insertion/extraction in this list
will be further explained in this paper (cf. §4.3).

4.3 The scheduler
The Scheduler component of Trampoline is invoked by

calling the function tpl schedule from running() in one of
the following situations: 1) task activation ; 2) task com-
pletion ; 3) event waiting ; 4) event setting. In our case we

2The activation count is used to store the number of jobs
activated of the same task.

11

will rather focus on the first two cases by supposing that
tasks are basic (tasks that can never be blocked by an event
waiting). In partitioned scheduling, this function does the
scheduling for the core concerned by the occured event. In
Global scheduling, only one schedule is performed for all
cores, and integrating such a scheduling mechanism consists
of modification to the scheduler functions in Trampoline.
Thus, we define three scheduling functions based on equiv-
alent functions currently implemented in Trampoline :

1. tpl edf activate task(): when a new job is activated,
its absolute deadline is first calculated by summing the
relative deadline with the current time. If the activa-
tion count indicates that the task has already a non
finished job, the new activated job is stored at the end
of the PendingJobList of the task. Otherwise this new
job is stored in the ReadyList according to its absolute
deadline. Task activation is a service that requires a
rescheduling for which a boolean noted need schedule
is set as true at the end of this function.

2. tpl edf terminate task(): this function is called only
when the OSEK service TerminateTask is invoked. First,
the PendingJobList of the terminated task is verified.
If there is a pending job, it is stored in the ReadyList
according to its absolute deadline. After that the -
need schedule boolean is set as true for rescheduling.

3. tpl schedule(): this function is called when the boolean
need schedule is set as true. Two tests are performed
in this function: 1) to see if there is a free processor
while the ReadyList is not empty ; 2) to see if the task
in the head of the ReadyList has a higher priority than
a running task. In the first case, the task in the head of
the list is extracted to be executed on the free proces-
sor. In the second case, the running task is preempted
and put back in the ReadyList, and the higher priority
one is extracted and left for execution.

5. CONCLUSION AND FUTURE WORK
In this paper we presented our integration of Global EDF

in Trampoline RTOS and the choices we made for this im-
plementation. Note that developing such scheduler is just a
first step in our reseach, since our goal is to verify the im-
plementation of several scheduling policies that were proven
optimal in theory. Consequently our work is directed to-
wards:

- improving the implementation: Trampoline in its
current version implements a global locking mechanism to
protect the acces to data structures. This forbids the par-
allel access to these resources by processors. This limits the
global treatment of simultaneous scheduling events. In our
work, we also consider studying whether this lock can be
replaced by finer locking mechanisms.

- modeling the scheduler: in this part, we are inter-
ested in modeling all operations and interactions between
the RTOS and the scheduling by abstracting the source code
of the scheduler. The transition to a global scheduler will
introduce new constraints and therefore a different behavior
than a partitioned scheduler. For that we must complete
Tigori’s model with a finer representation of the scheduler’s
internal properties. Hence, we consider using timed au-
tomata or timed Petri nets to establish a model which is

very close to the actual source code and allows to verify the
implementation.

- formal verification: the goal is to elaborate proofs
of the scheduler’s correctness and the validity of scheduling
properties after the implementation. For this, we plan to use
model-checking tools like UPPAAL [11] and Roméo [12].

6. REFERENCES
[1] Theodore P Baker. Comparison of empirical success

rates of global vs. partitioned fixed-priority and edf
scheduling for hard real time. Citeseer, 2005.

[2] Sudarshan K Dhall and Chung Laung Liu. On a
real-time scheduling problem. Operations research,
26(1):127–140, 1978.

[3] Sanjoy K Baruah, Neil K Cohen, C Greg Plaxton, and
Donald A Varvel. Proportionate progress: A notion of
fairness in resource allocation. Algorithmica,
15(6):600–625, 1996.

[4] Geoffrey Nelissen, Vandy Berten, Vincent Nélis, Joël
Goossens, and Dragomir Milojevic. U-edf: An unfair
but optimal multiprocessor scheduling algorithm for
sporadic tasks. In Real-Time Systems (ECRTS), 2012
24th Euromicro Conference on, pages 13–23. IEEE,
2012.

[5] Chung Laung Liu and James W Layland. Scheduling
algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[6] Jean-Luc Bechennec, Mikael Briday, Sébastien Faucou,
and Yvon Trinquet. Trampoline an open source
implementation of the osek/vdx rtos specification. In
Emerging Technologies and Factory Automation, 2006.
ETFA’06. IEEE Conference on, pages 62–69. IEEE,
2006.

[7] The Open Group Technical Standard. Base
Specifications, Issue 6. IEEE, 2008.

[8] Alessio Carlini and Giorgio C Buttazzo. An efficient
time representation for real-time embedded systems.
In Proceedings of the 2003 ACM symposium on
Applied computing, pages 705–712. ACM, 2003.

[9] Douglas W Jones. An empirical comparison of
priority-queue and event-set implementations.
Communications of the ACM, 29(4):300–311, 1986.

[10] Kabland Tigori, Jean-Luc Béchennec, Sébastien
Faucou, and Olivier Roux. Using formal methods for
the development of safe application-specific rtos for
automotive systems. In CARS 2015-Critical
Automotive applications: Robustness & Safety, 2015.

[11] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi. Uppaal—a tool suite for
automatic verification of real-time systems. Hybrid
Systems III, pages 232–243, 1996.

[12] Didier Lime, Olivier H Roux, Charlotte Seidner, and
Louis-Marie Traonouez. Romeo: A parametric
model-checker for petri nets with stopwatches. In
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages
54–57. Springer, 2009.

12

New Approaches to Contention-Sensitive Nested Locking
in Real-Time Systems∗

Catherine E. Nemitz
Department of Computer Science

University of North Carolina at Chapel Hill

ABSTRACT
Nested lock requests in multiprocessor real-time systems
can be handled by only a handful of synchronization pro-
tocols. These protocols trade off overhead and blocking un-
der varying analysis assumptions. In some systems, a fine-
grained contention-sensitive protocol has significantly lower
worst-case blocking compared to its non-contention-sensitive
counterparts, which yields improved schedulability provided
overheads are low enough. In this work, we summarize three
key schemes for handling nested requests and briefly discuss
existing protocols. We then propose three approaches to re-
duce the often interdependent overhead and blocking for a
new contention-sensitive protocol.

CCS Concepts
•Computer systems organization → Real-time sys-
tems; Embedded and cyber-physical systems; Embedded soft-
ware; •Software and its engineering →Mutual exclu-
sion; Real-time systems software; Synchronization;
Scheduling; Process synchronization;

Keywords
multiprocessor locking protocols, nested locks, priority-
inversion blocking, real-time locking protocols, contention-
sensitive blocking

1. INTRODUCTION
The progression of multicore technologies has allowed in-

creasing numbers of real-time applications to be conceived.
To allow these applications to become realities, we must
maximize the use of current hardware. For example, the au-
tomotive industry is pushing toward autonomous vehicles,
which require hardware with low weight, power consump-
tion, and size that can perform complex computations on in-
put data. In particular, sensing data such as images or video
streams may be processed and modified by several tasks, re-
quiring resource access control for that shared memory. In
addition, images may be processed by some combination of
GPUs, which in turn may be considered resources.

∗Work supported by NSF grant CNS 1717589. This material
is based upon work supported by the National Science Foun-
dation Graduate Research Fellowship Program under Grant
No. DGS-1650116. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

For any real-time application, synchronization protocols
are required to provide efficient resource-allocation. An ef-
ficient synchronization protocol results in schedulability im-
provements, which allow more effective use of the hardware.

We focus on systems in which nested resource requests are
allowed. That is, a job may require multiple resources si-
multaneously and thus will request the resources in a nested
fashion. Our goal is to guarantee contention-sensitive worst-
case blocking for all jobs. A job is considered to experience
contention-sensitive blocking if the amount of its blocking
is dependent only on the number of other requests for the
same resource. We will refine this notion in Sec. 2.

Contributions.
After covering background material, we will present three

ideas about how we propose to move contention-sensitive
locking protocols forward to achieve better schedulability.

2. BACKGROUND
We begin by giving an overview of the systems we are

considering and how such systems are analyzed. Then we
discuss three broad schemes that are used by various locking
protocols to grant access to multiple resources.

2.1 Models

Task model.
We assume the classic sporadic task model. We consider

a task system of n tasks denoted Γ = {τ1, . . . , τn}. Tasks
are scheduled on m processors using a job-level fixed priority
scheduler. We often consider an arbitrary job Ji of task τi.

Resource model.
We consider systems with nr resources. An arbitrary re-

source is denoted `a. Unless a locking protocol specifies
otherwise, resources may be requested in any order. In this
work, we focus on resources that require mutual exclusion.

Request model.
When a job Ji requires access to a resource `a, it issues

a request, denoted Ri,a. If Ji issues only one request, we
shorten this to Ri. We say the request is satisfied when the
job holds the resource. While the request is satisfied, it is
in a critical section. We denote the critical section length
of Ri as Li and the maximum critical section length of any
request Lmax. Once a request completes, the job releases
the resource. If job holds a resource and then requires an-
other, we say that the requests for these resources are nested.

13

R1

R2 R2

R3

R4

l l
b

l

R3

Figure 1: Example illustrating one potential ordering

of requests R1 through R4. Here, R1 is satisfied and

holds resource `a. The other requests are enqueued and

waiting for access to their required resources.

(Later, we explore a technique that allows requests to be for
multiple resources.) We denote the set of all resources Ji
will require as Di.

Nested requests occur in a variety of types of applications,
and the depth of nested requests is typically between two and
four (that is, between two and four resources are required
simultaneously within the innermost critical section) [1, 3].

2.2 Analysis
We consider spin-based locking protocols and analyze such

protocols on the basis of priority-inversion blocking (pi-
blocking), which occurs when a job cannot execute because
a lower priority job is holding a resource which the higher
priority job requires. We consider the worst-case pi-blocking
and take critical section lengths to be constant.

As mentioned above, we focus on contention-sensitive lock-
ing protocols. We denote the maximum amount of con-
tention for a resource `a, that is, the highest possible num-
ber of active requests for that resource, as ca. Note that this
value is static for a given system. (This is in contrast to the
dynamic concept of contention for `a, which is the number of
active requests for that resource at a particular instance in
time.) Given Ci = max

x∈Di

cx for a job Ji, we say that a locking

protocol is contention-sensitive if the worst-case pi-blocking
of any job Ji is bounded by O(Ci).

The key hindrance to contention-sensitive blocking is the
possibility of transitive blocking, which occurs when a job
experiences blocking because of job that it does not share
any resources with. Such a situation is depicted in Fig. 1;
request R4 conflicts only with R3, and yet neither of these
requests are satisfied because of the chain of blocking caused
by R1 and R2. This figure shows a system which allows
resources to be requested together. R1 is satisfied and holds
`a, depicted by the circle at the head of the queue. R2

has been enqueued for resources `a and `b. Likewise, R3

has been enqueued for resources `b and `c. Finally, R4 is
enqueued and waiting for access to `c.

2.3 Handling nested requests
The following three schemes handle nested requests to

provide mutually exclusive access to resources and prevent
deadlock. Each method has its trade-offs, some of which af-
fect analysis components such as the critical section length.
To illustrate each approach, we use a short running example.

Example 1. Consider a job J1 that requires resource `a.
In addition, consider J2 that will require access to `a and
then nested access to `b. Suppose there is also a job J3 that
requires access to `b and a job J4 that requires access to `c.

R1

R2

G1

R3

G2

R4

Figure 2: Example illustrating the effect of using static

groups.

R2,aR1

R2,a

R4

la l
b

lc

(a) (b)

R2,b

R3

la l
b

lc

Figure 3: In (a), R1 holds `a, and R2,a is waiting for

`a. In (b), R3 holds `b and R2,a holds `a, which allowed

R2,b to be issued for `b. The blocking of R2,b thus con-

tributes to the critical section length of R2,a, which in

turn increases the worst-case blocking of requests for `a.

Static group locks.
This method requires static groups of resources to be

formed by analyzing which resources are accessed in a nested
fashion by some job. A job requiring any resource in the
group must acquire the entire set. This approach allows a
mutex to control access to any shared resource; each job
will require only one group, so deadlock is impossible. The
use of a mutex yields low overheads and inherently provides
contention-sensitive blocking. However, it is important to
distinguish that this notion of contention is relative to the
created group of resources that a job requests. The static
groups may be quite pessimistic, causing a job to contend
with jobs that do not share resources but do share a group.

Example 1 (cont’d). With the four jobs above, static
groups G1 = {`a, `b} and G2 = {`c} could be formed. Then
jobs J1, J2, and J3 will all issues requests for G1, and job J4
will issue a request for G2, as shown in Fig. 2. Note that J1
and J3 now are considered to share a resource for the pur-
poses of determining blocking, though they do not actually
require access to the same resource. This is a small example
of the increased pessimism that static group locks cause.

Resource ordering.
In contrast to static group locks, resource ordering allows

fine-grained locking; each job only acquires the resources it
needs. In this approach, a total order on all resources is
defined prior to system startup. Any nested requests must
acquire resources in that order. This prevents deadlock and
easily allows for a low overhead protocol within this scheme.
However, this approach can easily inflate the critical section
lengths beyond the given Li, as illustrated by the following
example. In fact, this inflation can be more than m · Lmax.

Example 1 (cont’d). In this scenario, requests R1,
R2,a, and R4 were released before R3. As shown in Fig. 3(a),
R1 was immediately satisfied and holds `a. With the re-
source ordering imposed, J2 must first issue a request for `a

14

R1

R2 R2

R3

R4

la l
b

lc

Figure 4: With DGLs, job J2 issues a single request R2

for all resources it requires.

and then issue a separate request for `b, denoted R2,a and
R2,b, respectively. In Fig. 3(a), R2,a is waiting for access
to `a. R4 is satisfied and holds `c.

In Fig. 3(b), R4 has completed and R3 has been issued
for `b and is satisfied. Later, R1 completed, and R2,a be-
came satisfied. J2 then issued R2,b and must wait for R3

to complete. It holds `a, so the time R2,b blocks inflates the
critical section length of R2,a.

Observe that resource ordering can cause huge amounts of
blocking. A job requiring multiple resources may experience
the following. Just before its first resource becomes available,
requests may enqueue for its second resource. While it holds
the first resource, it could experience the worst-case blocking
for its second resource. This inflates the critical section,
causing higher blocking than the expected Li for any later
request for that first resource. This build-up of blocking can
be repeated for each nested resource access the job requires.

Dynamic group locks.
A third method for handling nested requests is by using

dynamic group locks (DGLs). In this scheme, a job requiring
nested resources issues a single request for all resources that
it requires. This lengthens all inner critical section lengths
to the length of the outermost access. Note that if a job
conditionally acquires `a or `b but not both, under DGLs, it
must request both resources. While holding both resources
decreases potential runtime parallelism, it does not have an
effect on the overall blocking; as discussed later as it per-
tains to static contention, we must consider the worst-case
contention for each resource, and this job would be counted
toward the contention of both resources regardless.

Several directions of work have been explored using the
DGL scheme, as discussed in Sec. 3. One approach has
moderate overheads and O(m) blocking (that is, blocking
bounded by the number of processors). Another approach
has similar overheads and contention-sensitive blocking given
certain analysis assumptions.

Example 1 (cont’d). Returning to our four jobs, un-
der DGLs, J2 issues a single request for both `a and `b. (In
order to prevent deadlock, protocols must ensure requests for
multiple resources enqueue atomically into all required re-
source queues.) Fig. 4 shows one way in which the requests
could enqueue. R1 is satisfied and holds `a. Thus, R2 is
blocked. As depicted in Fig. 4, R3 was issued after R2 and
must wait for access to `b. Regardless of when it is issued,
R4 is satisfied immediately, as no other requests require `c.

3. RELATED WORK
Standard mutex implementations, such as ticket locks and

MCS locks function well with static groups locks and are

inherently contention-sensitive [8].
Protocols that support fine-grained lock nesting by using

resource ordering include the Multiprocessor Bandwidth In-
heritance Protocol (M-BWI) [5], MrsP [4], and nested FIFO
locks [2], the last of which has corresponding analysis that
tractably bounds blocking.

The only protocols to use DGLs are those in the Real-
time Nested Locking Protocol (RNLP) family [11, 10]. Two
RNLP variants yield contention-sensitive blocking. The fast
RW-RNLP provides contention-sensitive resource access only
to read requests and non-nested write requests [9]. Nested
write requests under the fast RW-RNLP are not contention-
sensitive. Finally, the C-RNLP yields contention-sensitive
blocking with the assumption that critical section lengths
are the same for all resources [6].

4. NEW APPROACHES
We present three approaches to use with DGLs that we

believe will be important in improving upon existing ap-
proaches toward nested lock requests. In particular, our
goals are low overheads and contention-sensitive blocking for
all requests, which will lead to better schedulability results.

4.1 Mutex usage
When a lock implementation requires maintenance of sig-

nificant lock state, the simplest approach is to protect this
state with a mutex that prevents concurrent lock calls from
modifying the lock state simultaneously. This is the ap-
proach taken by the C-RNLP. While this is safe, it increases
overheads by causing all requests to conflict on the lock-state
mutex.

Therefore, our first approach to a new contention-sensitive
locking protocol is to eliminate or reduce the usage of a
lock-state mutex. Some lock structures allow this naturally
or with only a slight addition of state-maintenance opera-
tions and thus overhead. For example, enqueing on multiple
queues in a way that is seen as atomic simply requires that
two requests for the same resources enqueue in the same
order relative to each other for each resource. This is a con-
dition that can be checked and preserved without requiring
a mutex. Alternatively, even using a different mutex for
each resource queue would reduce the amount of blocking
that contributes to overhead, as only requests for the same
resource, which already contend, would share a given mutex.

4.2 Static contention
Previous approaches to providing contention-sensitive re-

source access have focused on doing so with a dynamic view
of contention; that is, a new request’s worst-case blocking
should be upper bounded by the number of active requests
with overlapping resource requirements. However, this dy-
namic view of contention cannot be used in schedulabil-
ity analysis. We must instead use the static measure of
contention (the upper bound of the possible dynamic con-
tention) in our analysis.

In light of this insight about the use of dynamic and static
contention, we aim to explore the use of static contention in
constructing a new contention-sensitive protocol.

A protocol designed around static contention may have
less overhead; decisions regarding enqueuing for resources
could be based on the static contention instead of comput-
ing the number of requests ahead of the current request.
We are interested in exploring the trade-offs in such an ap-

15

0 5 10 15 20 25 30 35
Tasks

0

2

4

6

8

10
Lo

ck
 O

ve
rh

ea
d

(m
ic

ro
se

co
nd

s) LS-C-RNLP
C-RNLP
RNLP
MCS

Figure 5: Lock overhead as a function of task count n for

nr = 64 and each job requesting four random resources

from that set.

proach, which we expect would increase both schedulability
and average blocking times (which could negatively impact
non-real-time workloads running on the same platform as
the real-time workload).

An alternate way to lower overheads could be to mix the
ideas of DGLs and lock ordering. Jobs could issue requests
under the DGL scheme, with all resources requested simul-
taneously. The lock state could then be updated with an
ordered approach, in which resources are ordered by decreas-
ing static contention. When enqueuing for these resources,
requests could be required to wait until some threshold value
is met before enqueuing in the subsequent queue. To clarify,
a request might enqueue for `a, wait for ca − cb time units,
and then enqueue for `b, with the goal of becoming satisfied
for all its resources at the same time.

4.3 Lock server
As with many ideas, this approach comes from a solution

to a different problem. When some legacy applications are
transfered to a multiprocessor context, a fundamental com-
ponent that can slow its execution is the presence of lock
requests. The idea of remote core locking improved perfor-
mance; one core was dedicated to processing lock requests
for one or more locks. This allowed the lock state and the
memory locations protected by the lock to remain cache-hot.
Requests were issued to this remote core by writing the lock
identifier and the address of the critical section that needed
to be executed to its shared cache space [7].

We propose a similar solution that we call a lock server. In
contrast to remote core locking, a lock server maintains the
lock state and executes the logic of lock and unlock calls but
does not execute any of the critical section code on behalf
of the request. This approach was motivated by previous
work [6], in which we observed overhead trends that imply
that the lock state bounces between different caches. In
particular, notice the overheads presented in Fig. 5 of the
RNLP and the C-RNLP. The tasks systems that generated
these overheads (described in more detail below) was run on
a 36 core machine with two sockets. Each task was pinned to
a core, and while there were at most 18 tasks, only a single
socket was used. However, once the second socket (with a
separate cache) was in use, overheads drastically increased.

To do some preliminary testing of the hypothesis that a
lock server would reduce overheads, we implemented the C-
RNLP as a simple lock server (denoted LS-C-RNLP). Each
request was issued to the lock server, which returned a lo-
cation in memory on which to spin. The job then spun on
its core until the value in that location in memory was set

by the lock server to indicate that its request was satisfied.
We evaluated the LS-C-RNLP against the original C-

RNLP, the RNLP, and the MCS on a dual-socket 18-cores-
per-socket Intel Xeon E5-2699 platform. As mentioned
above, each task was pinned to a core (using only a single
socket when possible). These tasks repeatedly performed
lock and unlock calls with a negligible critical section length
in order to try to cause the worst-case overheads. Each task
issued 1000 requests for a randomly chosen set of four re-
sources of the available nr = 64 resources. We report the
99th percentile of these overheads for varying numbers of
tasks in the system in Fig. 5.

For the new contention-sensitive protocol we develop, we
will test its overheads and the resulting schedulability of
implementing it both with and without a lock server.

5. CONCLUSION
We explored three approaches to attaining a more univer-

sally applicable contention-sensitive protocol with increased
schedulability results. In future work, we will explore these
ideas. In particular, we are attempting to build the lock
state data structures around the statically defined contention
per resource. We are considering using DGLs for request is-
suance, but within the lock logic, employing a lock-enqueuing
ordering based on decreasing static contention as a means
of limiting the length of any transitive blocking chains.

6. ACKNOWLEDGMENTS
The author would like to thank Jim Anderson and Tanya

Amert for their discussions and helpful feedback.

7. REFERENCES
[1] D. Bacon, R. Konuru, C. Murthy, and M. Serrano.

Thin locks: Featherweight synchronization for java. In
PLDI 1998.

[2] A. Biondi, B. Brandenburg, and A. Wieder. A
blocking bound for nested FIFO spin locks. In RTSS
2016.

[3] B. Brandenburg and J. Anderson. Feather-trace: A
lightweight event tracing toolkit. In OSPERT 2007.

[4] A. Burns and A. Wellings. A schedulability compatible
multiprocessor resource sharing protocol - MrsP. In
ECRTS 2013.

[5] D. Faggioli, G. Lipari, and T. Cucinotta. Analysis and
implementation of the multiprocessor bandwidth
inheritance protocol. Real-Time Systems, 48(6), 2012.

[6] C. Jarrett, B. Ward, and J. Anderson. A
contention-sensitive fine-grained locking protocol for
multiprocessor real-time systems. In RTNS 2015.

[7] J. Lozi, F. David, G. Thomas, J. Lawall, and
G. Muller. Remote core locking: migrating
critical-section execution to improve the performance
of multithreaded applications. In USENIX ATC’12.

[8] J. Mellor-Crummey and M. Scott. Algorithms for
scalable synchronization of shared-memory
multiprocessors. Transactions on Computer Systems,
9(1), 1991.

[9] C. Nemitz, T. Amert, and J. Anderson. Real-time
multiprocessor locks with nesting: Optimizing the
common case. In RTNS 2017.

[10] B. Ward and J. Anderson. Multi-resource real-time
reader/writer locks for multiprocessors. In IPDPS
2014.

[11] B. Ward and J. Anderson. Supporting nested locking
in multiprocessor real-time systems. In ECRTS 2012.

16

Ordering strict partial orders
to model behavioural refinement

Mathieu Montin
Université de Toulouse ; INP ; IRIT

2 rue Camichel, BP 7122
31071 Toulouse Cedex 7, France
mathieu.montin@enseeiht.fr

Marc Pantel
Université de Toulouse ; INP ; IRIT

2 rue Camichel, BP 7122
31071 Toulouse Cedex 7, France

marc.pantel@enseeiht.fr

ABSTRACT
Behavioural refinement plays a key role in the development
of correct–by–construction complex systems such as real time
distributed systems. Indeed, behavioural models coupled
with formal methods allow to assess the correctness of sys-
tem models with respect to system requirements. In that
purpose, behavioural refinements allow preserving the cor-
rectness of the models during the development phases, from
the early specification to the final embedded system. Refine-
ment is usually handled in an operational matter such that
each level of abstraction is derived from notions coming from
the closest higher level of abstraction. This vision however is
unsuitable when coupled with denotational semantics where
the solutions are not built but rather validated by the se-
mantics. Our work targets the definition of a refinement
relation compatible with this kind of semantics. This rela-
tion is integrated to CCSL where refinement is not a native
construct of the language and whose semantics is given in a
denotational manner.

CCS Concepts
•Software and its engineering→ Formal software veri-
fication; •Computer systems organization → Embed-
ded software; •Theory of computation → Type theory;

Keywords
Refinement; Behavioural models; Agda; CCSL

1. INTRODUCTION
Software is now ubiquitous and involved in complex in-

teractions between the human user and the physical world
in so-called cyber-physical systems (CPS). To handle the
growing complexity of these systems, separation of concerns
is mandatory. Two different kinds of separation are usu-
ally identified throughout their development: the horizontal
and vertical separation. The first one corresponds to the
various concerns in the system architecture which might be
described in different domain specific modelling languages
(DSMLs). The second one corresponds to the different steps
in a development leading from the requirements to the im-
plementation through the use of refinements. The horizon-
tal separation is usually handled through the abstraction of
the different parts of the system in a common behavioural
language. However, most of these languages allow the ex-
pression of constraints between the different preoccupations
of the system but lack the required expressiveness to handle

vertical separation. In this paper, we propose a formal defi-
nition of the relation of refinement in a denotational context.
It relies on an order between the strict partial orders that
are used to bind together the different instants on which
events occur. This work has been conducted using the Agda
proof assistant and associated to CCSL denotational seman-
tics, although no knowledge regarding both languages will
be needed here as details cannot be given due to space limits
but the whole development is available on the first author’s
web page.

2. A REFINEMENT EXAMPLE
The transition system depicted in Figure 1 is an exam-

ple of a simple system, which can be alternatively enabled
and disabled. While it is active, an action can be executed
any number of times. We focus on event traces and event
refinement and not state traces and refinement like [3] as
we model time using instantaneous event in a synchronous
manner.

Idle Run

Enable

Disable

Execute

Figure 1: A simple system

By picturing our example with a transition system, we
implicitly provided an operational semantics. Indeed, the
transition system can be seen as a machine which builds
a correct execution for the system. A denotational seman-
tic however, does not give any way of creating such traces
and instead provides predicates to assess the correctness of
a given trace. This distinction is essential since most refine-
ment strategies rely on operational semantics while we aim
at handling systems through their denotational semantics.
A possible trace for our example is depicted on Figure 2.
ten, tdi and tex respectively represent the occurrences of the
“Enable”, “Disable” and “Execute” transitions. This trace
could have been generated from our transition system and
would be validated by any denotational semantics describing
our example.

This trace starts with the birth of the system and possibly
goes on indefinitely, which makes this representation partial.
In addition, this design places each event on the same time-
line, thus ignoring horizontal separation. In order to make
it visible, we represent each event on a specific timeline on

17

ten tdi ten tex tex tdi ten tex tdi

Figure 2: A trace on a single timeline

Figure 3. The instants on each timeline are totally ordered
and those in the same vertical dotted lines are coincident.
These notions will be elaborated when introducing the strict
partial orders.

ten

tdi

tex

Figure 3: One timeline per event

The action executed by this system can be specified in
various ways. In this paper, we imagine that it is connected
to a light through the use of a memory containing a variable
m. This variable will be assigned the values 1 or 0, and the
light will be turned on and off accordingly. When the sys-
tem is enabled (ten transition), the light remains down until
a button is pressed (tex transition) shuts it down. Pressing
the same button will alternatively turn it off and on. Dis-
abling the system (tdi transition) turns it off, as depicted on
Figure 4.

Idle Run

ten {m← 0}

tdi {m← 0}

tex {m← 1−m}

Figure 4: The system pilots a light

By specifying the system behaviour, we defined events to
add to its traces. tm0 and tm1 respectively correspond to the
variable m being assigned 0 and 1. These additions belong
to horizontal separation since we added a new part to our
system (the module linked to the light). One of these pos-
sible traces is depicted in Figure 5. As we add new events,
refinement cannot be defined as a simple inclusion of traces
like [5].

ten

tdi

tex

tm0

tm1

Figure 5: The new trace of the system

Some events are occurring simultaneously, for instance ten
always occurs on an instant coincident to an occurrence of
tm0 . Such relations between events can be defined in CCSL
(a simple case of sub-clocking here), which has been handled
in a previous work on the mechanization of this language.

It is important to note that when describing this system,
we implicitly took a certain point of view regarding its def-
inition. We deliberately ignored some low level concerns
regarding the way such a memory is handled. This is a mat-
ter of vertical separation. The next sections of this paper
will focus on a more concrete level of abstraction. But first
we need to introduce some standard notions regarding time
handling in asynchronous languages.

3. REPRESENTATION OF TIME
When considering executable languages, we observe differ-

ent events which occur on given instants of time. Although
the common vision of time is a straight line inducing a to-
tal order between each existing instant, asynchronous sys-
tems introduce uncertainties that weaken this order. Two
instants are indeed not necessarily comparable, which leads
to the use of partial orders to represent the existing links
between them. Thus, each pair of instants is either:

• comparable, through a precedence relation ≺
• equivalent, through a coincidence relation ≈
• unrelated (neither comparable nor equivalent)

Some properties are required for these relations to form a
strict partial order:

• ≈ is an equivalence relation

• ≺ is irreflexive regarding ≈
• ≺ is transitive

• ≺ respects the classes induced by ≈

4. BEHAVIOURAL REFINEMENT

4.1 Goal
Whenever a certain event occurs on a given instant, its oc-

currence is considered immediate and punctual in the time-
line. However in some cases, such an event can be decom-
posed in smaller events which contradicts this property. In
our example, the“Enable”event can be viewed as a sequence
of sub–events, such as powering up the system, retrieving
the address of m, computing the value of 0 (here there is
no actual computation since 0 is an atomic value, but there
could be in the case of a more complicated arithmetical ex-
pression) and storing this value at the right address. These
events, except for the first one, are used to handle the com-
putation and the storing of a value in a memory. Taking
into account these events require to view the system at a
more concrete level, in which case its representation as a
transition system is depicted in Figure 6.

1 2 3

Idle Run

ten

tdi {m← 0}

tsta tcom

tsto

tex {m← 1−m}

Figure 6: The refined system

The “Enable” transition has been refined in several tran-
sitions. ten represents the powering of the system, tsta the

18

stacking of the address of m, tcom the computing of the value
of the expression 0 and tsto the storing of the computed value
at the stacked address.

Since both points of view we discussed are valid repre-
sentations of our system, it should be possible to describe
them in any concurrent language, without losing the link
that binds them. This leads to the main goal of our pro-
posal to model behavioural refinement, which is to describe
a system at different levels of observation without losing the
link between these levels. Thus, an instant at a certain level
could be refined by several instants at a lower level, just like
the “Enable” event was split into several different events.

Addressing this issue would allow system developers to
focus on their specific view of the system rather than a
common view shared among all of them. By representing
it from the right angle, they could grasp their constraints
even better without bothering about more concrete details.
The system could then be solved at different levels with the
guarantee that none of them will be compromising the oth-
ers. Furthermore, this notion of refinement could be used to
make explicit and prove simulations and bisimulations (or
mostly weak bisimulations) between systems. In this case,
the two specifications would not be different levels of ob-
servation of a system, but different ways of specifying its
behaviour.

4.2 Different levels of refinement
In our example, the higher level of observation is repre-

sented on Figure 7 while the lower level is represented on
Figure 8. In both these timelines, events not refined are
omitted, for the sake of clarity. They do not influence the
reasoning we are conducting, thus their omission is accept-
able. The different instants have been annotated with natu-
ral numbers in order to manipulate them more easily. From
the higher point of view, all the instants on which the sub-
events occur are equivalent to each other and to the con-
taining event. Their underlying order has no impact on the
trace of the system at this level.

0 5 10ten1

1 6 11ten2

2 7 12
tsta

3 8 13
tcom

4 9 14
tsto

Figure 7: The annotated higher level of observation

For the lower level of observation, the different instants are
ordered in such a way that they respect the specification in
Figure 6. The vertical dashed lines represent the equivalence
classes induced by the thinner strict partial order, while the
rectangles represent the ones induced by the refined strict
partial order.

The representation in Figure 7 allows us to to assess the
coincidence and the precedence relation that bind its differ-
ent instants, as subsets of N×N. Since both these relations
must be transitive, the coincidence must be symmetrical and
they must form a strict partial order, we will omit the related

ten1

ten2

tsta

tcom

tsto

0 5 10

1

2

3

4

6

7

8

9

11

12

13

14

Figure 8: The annotated lower level of observation

elements which can be deduced from these properties.

Coincidence Precedence
(0 , 1) (0 , 2) (0 , 3)

(0 , 5)
(0 , 4) (5 , 6) (5 , 7)
(5 , 8) (5 , 9) (10 , 11)

(5 , 10)
(10 , 12) (10 , 13) (10 , 14)

These traces are potentially infinite, thus we only give
the visible subset of each relation. However, we can define
them mathematically for any natural number in order to
handle their infinite number. This is done by relying on the
Euclidean decomposition by 5:

∀(a, a′) ∈ N2,∃! (q, r, q′, r′) ∈ N4 :
a = 5q + r ∧ r < 5 ∧ a′ = 5q′ + r′ ∧ r′ < 5

These relations are defined as follows:

∀(a, a′) ∈ N2, a ≈2 a′ d⇐⇒ q = q′

∀(a, a′) ∈ N2, a <2 a′ d⇐⇒ q < q′

The same work can be achieved for the lower level of ob-
servation, which is displayed on Figure 8. The relations
extracted from Figure 8 are depicted in the table below.
As previously explained, only the relevant couples are men-
tioned.

Coincidence Precedence
(0 , 1) (1 , 2) (2 , 3) (3 , 4)
(5 , 6) (4 , 5) (6 , 7) (7 , 8)

(10 , 11) (8 , 9) (9 , 10) (11 , 12)
. . . (12 , 13) (13 , 14) . . .

Here are the relations at the concrete level:

∀(a, a′) ∈ N2, a ≈1 a′ d⇐⇒
(q1 = q2) ∧ ((r1, r2) ∈ [0, 1]2 ∨ (r1 = r2 ∧ r1 /∈ [0, 1]))

∀(a, a′) ∈ N2, a <1 a′ d⇐⇒
(q1 < q2) ∨ ((q1 = q2) ∧ (r1 < r2) ∧ (r2 6= 1))

Our example exhibits two different couples of relations,
which should be in a situation of refinement.

4.3 Our proposal
As an attempt to formalize this approach, we propose to

connect different levels of abstraction through the strict par-
tial order they carry. We define the following relation <r to
ensure the underlying relations fulfil the right conditions to
maintain the integrity of the different representations re-
garding the semantics of refinement:

19

∀I ∈ Ω, ∀(<c, <a,≈c,≈a) ∈ (I × I)4 :

(<c,≈c) <r (<a,≈a)
d⇐⇒ ∀(i1, i2) ∈ I :

i1 <c i2 ⇒ i1 <a i2 ∨ i1 ≈a i2 (1)
∧ i1 <a i2 ⇒ i1 <c i2 (2)
∧ i1 ≈c i2 ⇒ i1 ≈a i2 (3)
∧ i1 ≈a i2 ⇒ i1 ≈c i2 ∨ i1 <c i2 ∨ i2 <c i1 (4)

<r is defined as a relation between pairs of relations (<c

,≈c) and (<a,≈a) that represent the strict precedence and
the equivalence composing the strict partial orders bound
to both levels of abstraction. In this definition, the level
annotated by the index c is the more concrete level and a
is the more abstract. We state what it means for a pair of
relations to refine another pair of relation. These relations
are defined on the set I of instants. We can only compare
pairs of relations that are bounded to the same set. This
definition is composed of four predicates, each of which in-
dicate how one of the four relations is translated into the
other level of observation:

1. If a strictly precedes b in the lower level, then it can
either be equivalent to it in the higher level or still precede
it.

2. However, if a strictly precedes b in the higher level, then
it can only still precede it in the lower level. This direction
doesn’t allow any loss of information.

3. On the contrary, if a is equivalent to b in the lower level,
it can only stay equivalent in the higher level.

4. If a is equivalent to b in the higher level then we only
assure that these two instants are still related in the lower
level. We can gain information this way.

This definition can be extended to strict partial orders:
A strict partial order refines another when their underlying
relations are in a relation of refinement.

5. RELATED WORKS
Our work takes place in GEMOC that mixes both hori-

zontal and vertical separation of concerns. Indeed, GEMOC
allows to define the various DSMLs used to model the vari-
ous parts in a CPS in the various phases of the development.
GEMOC relies on the Clock Constraint Specific Language
(CCSL) in order to model both the MoC for the various
DSML [6, 8, 12] and the coordination between DSML using
the BEhavioural COOrdination Language (BeCooL) [11].

Our approach is motivated by the lack (to our knowl-
edge) of formal definition of behavioural refinement in a
context of denotational semantics. Refinement has already
been studied widely through operational semantics [15, 13],
and is the core concept advocated in developing correct–by–
construction systems with the B [1] and Event-B [2] meth-
ods.

Our proposal provides a mechanized relation of refinement
in Agda and aims at being coupled to a previous work on a
mechanisation of the semantics of CCSL in the same proof
assistant, based on a paper denotational semantics [7]. Thus,
this approach could be reused for any other concurrent lan-
guages. Formal mechanization of temporal languages has
already been done using other formal methods, for example
[10] uses Higher Order Logic in Isabelle/HOL; [9] and [14]
use the Calculus of Inductive Constructions in Coq, see [4].

6. CONCLUSION
This paper presented a mathematical relation over strict

partial order whose goal is to model behavioural refinement
in a denotational manner. Each level of abstraction is as-
sociated to a specific strict partial order while our rela-
tion binds them together. This definition has been mech-
anized in the Agda proof assistant, which allowed us to
prove several properties about it as well as connect it to
the mechanization of CCSL we made in a previous work.
The bridge between these contributions has allowed us to
prove the preservation of several CCSL operators through
our relation of refinement. This work will lead to an exten-
sion of CCSL with a refinement operator which will allow
both comparing language semantics in GEMOC and con-
ducting correct–by–construction developments more easily
with CCSL. The whole development, including the parts
about CCSL, is available online on the first author’s web
page.

7. REFERENCES
[1] J. Abrial. The B-book - assigning programs to meanings.

Cambridge University Press, 2005.

[2] J. Abrial. Modeling in Event-B - System and Software
Engineering. Cambridge University Press, 2010.

[3] R. Back and J. von Wright. Trace refinement of action systems.
In CONCUR ’94, Concurrency Theory, 5th Intl. Conf.,
Uppsala, Sweden, Aug. 22-25, Proc., pages 367–384, 1994.

[4] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development - Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science. An
EATCS Series. 2004.

[5] A. Cavalcanti and M. Gaudel. A note on traces refinement and
the conf relation in the unifying theories of programming. In
Unifying Theories of Programming, 2nd Intl. Symp., UTP
2008, Dublin, Ireland, Sep. 8-10, Revised Selected Papers,
pages 42–61, 2008.

[6] B. Combemale, J. DeAntoni, M. V. Larsen, F. Mallet,
O. Barais, B. Baudry, and R. B. France. Reifying concurrency
for executable metamodeling. In Software Language
Engineering - 6th Intl. Conf., SLE 2013, Indianapolis, IN,
USA, Oct. 26-28. Proc., 2013.

[7] J. Deantoni, C. André, and R. Gascon. CCSL denotational
semantics. Research Report RR-8628, 2014.

[8] J. DeAntoni, P. I. Diallo, C. Teodorov, J. Champeau, and
B. Combemale. Towards a meta-language for the concurrency
concern in dsls. In Proc. of the 2015 Design, Automation &
Test in Europe Conf. & Exhibition, DATE 2015, Grenoble,
France, March 9-13, 2015, 2015.

[9] M. Garnacho, J. Bodeveix, and M. Filali-Amine. A mechanized
semantic framework for real-time systems. In Formal Modeling
and Analysis of Timed Systems - 11th Intl. Conf.,
FORMATS 2013, Buenos Aires, Argentina, August 29-31,
2013. Proc., 2013.

[10] R. Hale, R. Cardell-Oliver, and J. Herbert. An embedding of
timed transition systems in HOL. Formal Methods in System
Design, 3(1/2), 1993.

[11] M. E. V. Larsen, J. DeAntoni, B. Combemale, and F. Mallet. A
behavioral coordination operator language (bcool). In 18th
ACM/IEEE Intl. Conf. on Model Driven Engineering
Languages and Systems, MoDELS 2015, Ottawa, ON,
Canada, Sep. 30 - Oct. 2., 2015.

[12] F. Latombe, X. Crégut, B. Combemale, J. DeAntoni, and
M. Pantel. Weaving concurrency in executable domain-specific
modeling languages. In Proc. of the ACM SIGPLAN Intl.
Conf. on Software Language Engineering, SLE 2015,
Pittsburgh, PA, USA, Oct. 25-27, 2015.

[13] D. Murphy and D. Pitt. Real-timed concurrent refineable
behaviours, pages 529–545. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1991.

[14] C. Paulin-Mohring. Modelisation of timed automata in coq. In
Theoretical Aspects of Computer Software, 4th Intl. Symp.,
TACS 2001, Sendai, Japan, October 29-31, 2001, Proc., 2001.

[15] G. Ramanathan. Refinement of events in the development of
real-time distributed systems. Theoretical Computer Science,
133(2):341 – 359, 1994.

20

A hypervisor schedulability analysis for safety and
security critical applications scheduled in arbitrary

patterns of slots

Tristan Fautrel
Université Paris-Est

LIGM, UMR CNRS 8049
tristan.fautrel@u-pem.fr

Laurent George
ESIEE Paris

LIGM, UMR CNRS 8049
laurent.george@esiee.fr

Frédéric Fauberteau
Léonard de Vinci Pôle

Universitaire, Research Center
frederic.fauberteau@devinci.fr

ABSTRACT
This paper focuses on the problem of scheduling several
applications on top of a hypervisor. The hypervisor is in
charge of satisfying safety and security constraints enforced
by space and temporal isolation. An application is run by
one processor of a multiprocessor platform in dedicated slots
composing a pattern. One processor can run several appli-
cations each assigned to a dedicated pattern of slots. A
hypervisor distributes the time resource among several Vir-
tual Machines (VMs) on a multiprocessor architecture. Each
VM embeds an application consisting of a set of sporadic
real-time tasks. These tasks are scheduled according to a
preemptive Fixed-Task-Priority (FTP) policy in the slots as-
signed to their application. A task can be executed by one or
several slots and a slot can execute several tasks. First, we
derive an exact schedulability condition using response time
analysis for sporadic tasks scheduled in a periodic arbitrary
pattern of slots. Then, we investigate several pattern con-
structions derived from the scheduling of tasks with classical
schedulings like Round Robin (RR), Weighted Fair Queue-
ing (WFQ), Rate Monotonic (RM) and Earliest Deadline
First (EDF). Finally, we compare by simulation the success
ratios of several constructions of slot patterns.

1. INTRODUCTION
Multicore Commercial Off-The-Shelf (COTS) platforms

are now considered as interesting powerful platforms for ex-
ecuting safety critical applications like those in the automo-
tive industry. One challenge arises when several applications
of different safety and security constraints are executed on
the same platform. Satisfying both constraints can be ob-
tained by enforcing space and temporal isolation between
applications e.g. by using processor affinity possibilities,
cache partitioning and cluster scheduling. The approach
currently considered in the automotive industry to satisfy
space and temporal isolation is to execute applications on
top of a hypervisor in charge of managing platform resources
so as to preserve this space and temporal isolation. This put
a high level of constraints on the hypervisor that must be
certified for a given set of safety and security constraints.

Hierarchical scheduling and compositional approaches [7]
use the concept of servers in charge of executing components
developed in isolation.

In this paper, we investigate one solution adopted in the
industry (in particular for automotive application) based on
a certified hypervisor. We suppose that each application
is assigned to a specific processor of a multicore platform,

using processor affinity and cache partitioning controlled by
the hypervisor. A processor can execute several applications.
Applications are modeled by sporadic tasks. The hypervisor
defines for each processor a scheduling table of slots dedi-
cated to the execution of all applications. A slot can execute
several tasks depending on their Worst Case Execution Time
(WCET) and a task can be executed on several consecutive
slots assigned to its application.

In this paper we study the schedulability problem of spo-
radic tasks, associated to one application, when tasks are
scheduled by one processor in a pattern of slots. Several
patterns of slots, one per application, can be associated to
one processor. Therefore each application may be studied
independently once a pattern of slots for it is found.

The contribution of this paper is first to find a schedula-
bility analysis for the local tasks of each application (sched-
uled by FTP) by taking into account the interference of the
global scheduler which selects an application to execute on
one processor at time t. The analysis and the model are
similar to [4] except that we consider FTP instead of EDF
as local scheduling policy. We then compare different ap-
proaches based on classical algorithms to find the patterns
and then the global scheduler. Our approach differs from
the Generalized Multi Frame approach [1] by the fact that
slots assigned to one application can execute several tasks
and not only one.

2. MODEL AND NOTATIONS
Our model is a two-level hierarchical scheduling scheme.

In this model, we define patterns of time slots which corre-
sponds to servers in the model described in [4]. Each pattern
corresponds to a VM and is comprised of a task set that can
be seen as an application. A table is a structure that con-
tains all the patterns of slots and that corresponds to the
entire system. By definition, a VM is scheduled in consecu-
tive time slots defining a pattern of slots. Each slot can be
used by one or several sporadic tasks.

Our system under study consists in one single processor
of a multiprocessor platform managed by a hypervisor for
executing a set of applications. On this system we schedule
a task set τ of preemptive tasks, each task is assigned to
one application. The ith sporadic task is denoted τi and is
characterized by the tuple (Ci, Di, Ti) where Ci is its Worst
Case Execution Time (WCET), Di its arbitrary deadline
and Ti its minimal inter-arrival time. The utilization of a
task τi is defined by Ci

Ti
and is denoted Ui. These tasks are

executed on a platform built on a hypervisor that schedules

21

ρ1

0 5 10

I11 I12
O1

1 O1
2

σ1
1

σ1
2

Figure 1: Pattern representing the execution of a
VM and comprised of 2 time slots.

ρ1

ρ1s2

0 5 10

ρ1s1

Figure 2: The same pattern shifted to represent the
segments

several VMs. A given task is assigned to only one VM.
We represent the execution parameters of a VM by a peri-

odic pattern of time slots of execution. Our system consists
in a set of VMs that is represented by a table ρ including
all the patterns. The pattern of the sth VM associated to
one application is denoted ρs. The tasks assigned to this
application and then to the pattern ρs are denoted τ(ρs).

Each pattern is composed of a list of segments. The kth

segment of ρs is denoted σsk and is composed of an idle slot
section followed by a non empty time slot dedicated the
the execution of tasks (e.g. filled rectangle from 1 to 5 in
Figure 1). A segment σsk is defined by the tuple (Osk, I

s
k)

where Osk is the offset from the activation time of ρs and Isk
the idle slot between Osk and the start time of time slot of
σsk.

The pattern ρs is characterized by the tuple (Cs, T s, ~σs)
where CS is its execution time, T s its period and where
~σs represents the set of segments that composes ρs. The
parameters of the pattern are defined by the tasks that are
associated to it. We only know its minimal utilization which
must be greater than the sum of the utilization of the tasks.

In Figure 1, we show an example of a pattern consisting of
two segments. The first segment σ1

1 has an offset O1
1 equal

to 0 and an idle slot I11 equals to 1. The second one, σ1
2 has

an offset O1
2 equal to 5 and an idle slot I12 equals to 2.

By using this representation of ρ1, a pattern may contain
segments without time slot. This is represented by ρ1 in
Figure 2. If the time slots of this pattern are represented,
the third segment has for parameters an offset O1

3 equal to 9
and an idle slot I13 equal to 1 which leads to an empty time
slot. If any of this case happen the pattern will be shifted to
start at an idle slot and to finish at a time slot. Throughout
this paper, every pattern may be shifted to match this rep-
resentation if it ends by an idle time slot after its creation.
When a pattern is studied, the others do not have to be
taken into account. This is why a pattern may be shifted
without any impact on the analysis of others.

In Figure 2 a pattern and its two possible shifts are rep-
resented. The pattern ρ1 cannot be represented using our
model since its representation does not end by a non empty

time slot (ρ1 ends by an idle slot). We can apply a right-
shift of 1 (respectively of 5) time units to obtain the shifted
representation ρ1s1 (respectively ρ1s2).

3. PATTERN SCHEDULABILITY ANALYSIS
In this section, we present an exact schedulability analysis

for a sporadic task set scheduled in an arbitrary pattern of
slots, by a FTP algorithm on a platform composed of a set
of VMs. For the sake of space we will not recall the classical
Worst Case Response Time (WCRT) presented in [5] and
only the WCRT with multiple segments will be explained
(which is more general than with only one segment).

3.1 Pattern Critical instant
In order to provide an exact schedulability analysis, the

scenario that exhibits the worst case response time has to be
identified. As presented in [5], the worst case response time
is obtained when the analysis is performed by considering
the minimum inter-arrival time for all tasks.

In 1973, Liu and Layland [6] proved that by using a FTP
algorithm a critical instant (”a critical instant for a task is
defined to be an instant at which a request for that task will
have the largest response time”) is when all the tasks are
synchronous (all released at the same time). In our model
the release time of a task can be out of the slots associated
to its VM, this means that any instant may be the critical
instant.

As we use the definition of the critical instant from Liu
and Layland [6], we need to adapt this definition to our
model. We have sporadic tasks. In order to have the highest
load on the system, these tasks may be seen as periodic
after a critical instant. The main difference between the Liu
and Layland model and ours is fact task can only be run in
the time slots of the VM they belong to. Tasks cannot be
executed during idle slots during which their VM is inactive.
This time may be seen as a task (for a given VM there is
as many idle tasks as this VM has a segment. We may
now introduce the kth idle task of the pattern ρs: τ idlek . Its
parameters are Isk for its duration (constant) and T ∫ for its
period. We do not need a specific deadline so it may be equal
to the period. The parameters and the activation time of
this task cannot be changed.

This task is always executed as soon as it is released. As
we used a FTP algorithm we can define the priority of this
task as the highest. Thanks to this priority we assure that
this task is executed as soon it is released and our model
with the idle task is the same as in Liu and Layland [6].

Theorem 1. A candidate critical instant corresponds to
a time when all the sporadic tasks are synchronous with the
beginning of an idle task τ idle and then periodic

Proof. The proof is divided in two cases. The first one
is when the pattern contains only one segment. This case is
trivial. By using the definition of the critical instant given
by [6]. We have two kinds of task: the regular and the idle
task (only one since there is only one segment). The only
way to have a synchronous activations is then to activate
the tasks at the same time as the only idle task.

The second case is when the pattern contains more than
one segment. As said before, the critical instant is supposed
to be when the sporadic tasks are synchronous. In our model
we have multiple idle tasks for which we cannot change the
activation time. Only the activation of the sporadic tasks
may be changed. As the idle tasks have different activation

22

ρ1s1

ρ1s2

0 5 10

Figure 3: Same pattern with the same tasks syn-
chronous with two different idle tasks.

times we cannot have a fully synchronous system. But we
know for a given idle task that a critical instant can be found
when the sporadic tasks are released synchronously with it.

That gives us candidates critical instants and not only
one. These candidates are when the system is the most
synchronous i.e. when all sporadic tasks are synchronous
with the beginning of an idle slot (as other idle slots cannot
be moved).

In our model we therefore reduce at most as possible can-
didate critical instants. This method will drastically reduce
the complexity of the computation of the response time of a
sporadic task, by computing it T ∫ times (for a task in the
pattern ρs), the computation is done as many times as the
pattern contains a segment.

We show in Figure 3 that with multiple segments the crit-
ical instant is not obviously when the tasks are synchronous
with the greatest idle task. We used two tasks in this figure:
τ1(2, 10, 10) and τ2(1, 10, 10). Here τ1 has the greatest pri-
ority and τ2 the lowest. The same pattern ρ1 is represented
shifted with on the two segments. The two shifts are rep-
resented by ρ1s1 and ρ1s2 . With ρ1s1 , starts an idle task with
cost 1 whereas ρ1s2 starts with an idle task of cost of 3.

In this figure the execution of τ1 is represented by the
horizontal lines whereas the execution of τ2 is represented
by the vertical lines. We can see that τ2 has a response time
of 7 within ρ1s1 and of 6 within ρ1s2 . The critical instant is
then represented by ρ1s2 , which starts with the idle task with
the lower cost. We cannot state of the exact critical instant
when the pattern contains more than one segment without
testing the WCRT of the candidates.

3.2 Worst Response Time with multiple seg-
ments

The case of multiple segments is more general than the
case with only one segment. The analysis implies to consider
a set of possible critical instants (each start time of an idle
time slot) instead of just one. Thus, we represented the
patterns as a list of segments with only an offset and an
idle slot. Considering the pattern ρ1 in Figure 2, the critical
instants are at time 0 in the shifted representation ρ1s1 and
ρ1s2 . The worst-case response time ri of a task τi of ρ1 is
given by the maximum response time among those computed
using both representations. It is computed by applying the
following equation:

ri = max
ρis∈shift(ρi)

(
ri
(
ρis

))
(1)

where shift(ρi) denotes the set of shifted representations
of ρi and ri

(
ρis
)

denotes the response time of the task τi
computed according to the shifted representation ρis.

The response time ri
(
ρis
)

for a shifted representation is
computed by the method described in [8] and given by the
following equation:

ri
(
ρis

)
= max
q∈{0...Q}

(wi,q − qTi) (2)

where q denotes the index of the job of the task τi and Q is
the maximum number of jobs to consider to find the worst
case response time such that wi,Q ≤ (Q+ 1)Ti.

The workload wi,q is computed by the following recurrence
(adapted to our context):

wm+1
i,q = (q + 1)Ci +

∑

j∈hp(i)

⌈
wmi,q
Tj

⌉
Cj

+
∑

σs
k
∈ ~σs

(⌈
wmi,q −Osk + Isk

T s
⌉
Isk

) (3)

The last part of this equation computes the number of
times that the idle slot had been scheduled for the kth seg-
ment at time wmi,q.

4. SIMULATION
In this section we compare different algorithms used to

generate the time slots of the patterns. Before comparing
the algorithms, we present how we generate our task sets
and patterns. The first generated objects are the tasks. To
avoid a too long analysis, we reduce the hyper-period by
using a part of the generator presented in [3]. In this paper,
the authors present an algorithm to restrict the hyper-period
of a generated task set. The values chosen to generate the
periods in this algorithm gives most of the time harmonic
periods. We will see why this point is important in our
simulations. From this paper, we only use the algorithm in
[3] to generate the periods.

Each period is computed by picking a set of numbers in
a given matrix of prime powers. Hence we are sure that
the hyper-period is bounded by the product of all prime
powers of the matrix. For the remaining parameters, we use
the UUniFast [2]. We generate 1000 task sets of 10 tasks
by combining these two algorithms for each utilization value
comprised between 0.3 and 0.8. Since the utilization value of
a task τi is generated by UUniFast, its period Ti is randomly
generated (using [3]) and its WCET Ci is directly derived
from the equality Ci = Ui × Ti. The arbitrary deadline Di
of τi is defined by Di = 10× Ti.

Our simulated systems are composed of 10 tasks spread
over 3 patterns. After the task generation, we proceed by the
assignment of tasks to a pattern. Each pattern has at least
one task since we uniformly generate a random integer be-
tween 0 and 2 that corresponds to the index of the pattern
on which the generated task is assigned. When the num-
ber of tasks not yet associated to a pattern is less than the
number of pattern with at least one task, we continuously
generate a random number until this number corresponds to
a pattern without tasks.

We have at this point the tasks generated and the patterns
with at least one task. As we constructed our systems in
order to have an utilization always less than 100%, the CPU
is not fully used. To avoid this behaviour and increase the
number of schedulable task set we will introduce a boosting
operation to recover the unused utilization. The parameters
of the patterns are deduced from the tasks associated to it.
The boosting operation consists then in adding a specific
amount of utilization to the utilization of a task to obtain
a total utilization equals to 1. By doing this we will obtain
a virtual set of tasks that we will use to generate the time
slots of the pattern (by using a scheduling algorithm).

We boost the tasks by spreading the remaining utilization
of the system over the tasks. Each task of the same pattern
receives the same amount of utilization. The application

23

of boosting algorithms on a task set may imply deadline
misses during the scheduling since the total utilization of
the resulting task set is now equal to 1. But this schedule is
only used to generate the patterns table and these deadline
misses do not impact the scheduling of the original task set.

The number of tasks in the subset τ(ρs) (where τ(ρs) is
the assigned subset of τ in the pattern ρs) is given by the
term |τ(ρs)|. To boost the tasks of τ according to the period,
we introduce the term Tmax(ρs) that represents the largest
period among the periods of tasks in τ(ρs). By definition,
Tmax(ρs) is given by the following equation:

Tmax(ρs) = max
τi∈τ(ρs)

(Ti)

We now compute the ratio αsT of remaining utilization as-
signed to ρs according to the period by the following equa-
tion:

αsT =
Tmax(ρs)∑

ρu∈ρ
Tmax(ρu)

Algorithm 1: Boosting algorithm

Input: Urem the remaining utilization
Input: ρ the table of patterns
Result: {Uα} the set of boosted utilization for each

task
1 foreach ρs ∈ ρ do
2 foreach τj ∈ τ(ρs) do

3 Uαj = Uj +
αs
T×Urem

|τ(ρs)| ;

4 end

5 end

The complete algorithm for the boosting is described in
Algorithm 1. The fraction αs×Urem

|τ(ρs)| corresponds to an equal

distribution of the remaining utilization assigned to ρs be-
tween all tasks of τ(ρs). The result of this algorithm is the
set {Uα} where the utilization Uj of each task τj of τ(ρs) is
incremented by this fraction.

Once the set {Uα} is computed, one can derive the boosted
parameters Cαj and Tαj for each task τj . Since the terms of
all previous equations are rational numbers, Cαj and Tαj are
also rational numbers. For the sake of readability, we do not
discuss how to extract Cαj and Tαj from {Uα}. The virtual
set of boosted task may now be scheduled to find the time
slots of each pattern.

Figure 4 shows our results of the schedulability of the gen-
erated tasks set according to the utilization. The different
algorithms used to generate the time slots are: RM in both
Preemptive (P) and Non-Preemptive (NP) modes, EDF in
both P and NP modes, RR in P mode and WFQ in NP
mode. We see that RR outperforms the other algorithms.
The EDF and the RM algorithms come next with the same
curve. As the period of the task generated are most of the
time harmonic, the RM and EDF will give the same results
in the preemptive mode. The other algorithms used in non-
preemptive mode have really similar curves.

We can explain this results by looking at the formula
which gives the WCRT. This formula adds to the classi-
cal response time the idle slots of every different patterns.
So the more fair the algorithm is, the more task sets may
be scheduled and that is why RR outperforms the others
since it is the most fair algorithm used. This is also why the
non-preemptive algorithms have such bad results compared
to the preemptive ones.

40	%

50	%

60	%

70	%

80	%

90	%

	0.3 	0.35 	0.4 	0.45 	0.5 	0.55 	0.6 	0.65 	0.7 	0.75

Su
cc
es
s	R

at
io

Taskset	Utilization

P-EDF
P-RM
P-RR

NP-EDF
NP-RM

NP-WFQ

Figure 4: Simulation results

5. CONCLUSION
In this paper we proposed a schedulability analysis for ap-

plications run by a hypervisor. To preserve safety and secu-
rity constraints, an application is allocated to one processor
of a multiprocessor platform. One processor can execute
several applications assigned to it in dedicated patterns of
temporal slots managed by the hypervisor (one pattern per
application). Each pattern is periodic and contains several
slots that are not necessarily periodic in the pattern. Each
slot can execute several tasks. We propose an exact schedu-
labity test for an application modeled by sporadic tasks and
executed in the slots of an arbitrary pattern. Then we pro-
pose several pattern constructions derived from the schedul-
ing of task with a well-known real-time schedulings (RR,
WFQ, RM and EDF). Finally, we compared the success ra-
tio of the different pattern construction heuristics.

As a further work, we would like to extend this work by
expressing the problem of finding valid pattern of slots as
a linear programming problem, taking into account all the
constraints of the tasks.

Another extension will consist in considering the possibil-
ity to assign a pattern of slots for an application on several
processors. We would like to compare global algorithms,
semi-partitioned algorithms for the construction of pattern
of slots.

6. REFERENCES
[1] S. Baruah, D. Chen, S. Gorinsky, and A. Mok.

Generalized multiframe tasks. Real-Time Systems,
17:5–22, 1999.

[2] E. Bini and G. C. Buttazzo. Measuring the
performance of schedulability tests. Real-Time Systems,
30(1–2):129–154, 2005.

[3] J. Goossens and C. Macq. Limitation of the
hyper–period in real-time periodic task set generation.
In Proc. of RTS, pages 133–148, 2001.

[4] A. Guasque, P. Balbastre, and A. Crespo. Real-time
hierarchical systems with arbitrary scheduling at global
level. Journal of Systems and Software, 119:70–86, 2016.

[5] J. P. Lehoczky. Fixed priority scheduling of periodic
task sets with arbitrary deadlines. In Proc. of RTSS,
pages 201–209. IEEE, 1990.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the ACM (JACM), 20(1):46–61, 1973.

[7] T. Nolte. Compositionality and cps from a platform
perspective. In Proc. of RTCSA, volume 2, pages
57–60, 2011.

[8] K. W. Tindell, A. Burns, and A. J. Wellings. An
extendible approach for analyzing fixed priority hard
real-time tasks. Real-Time Systems, 6(2):133–151, 1994.

24

	Message from the Workshop Chairs
	Table of Contents
	Paper
	Multimode Application on a Reconfigurable Platform: Introducing a New Model and a First Protocol
	Towards Statistical Estimation of Worst Case Inter-core Communications
	Reducing the Gap between Theory and Practice: Towards a Proven Implementation of Global EDF in Trampoline
	New Approaches to Contention-Sensitive Nested Locking in Real-Time Systems
	Ordering Strict Partial Orders to Model Behavioural Refinement
	A hypervisor schedulability analysis for safety and security critical applications scheduled in arbitrary patterns of slots

